A325086 Prime numbers congruent to 9, 25 or 57 modulo 112 representable by x^2 + 448*y^2.
457, 569, 617, 809, 1289, 1801, 1913, 2153, 2297, 2473, 2521, 2633, 3049, 3257, 3929, 4057, 4153, 4201, 4937, 5209, 5273, 5881, 6073, 6553, 6841, 7177, 7193, 7417, 7529, 7673, 7753, 8009, 8521, 8537, 8681, 9769, 10889, 11257, 11321, 11369, 11593, 11657, 11897
Offset: 1
Keywords
Examples
Regarding 7177: - 7177 is a prime number, - 7177 = 64*112 + 9, - 7177 = 3^2 + 448*4^2, - hence 7177 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325086
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments