A325087 Prime numbers congruent to 1 or 169 modulo 240 representable by both x^2 + 150*y^2 and x^2 + 960*y^2.
1129, 3361, 3769, 4801, 5209, 5449, 5521, 5689, 8329, 8641, 9601, 9769, 10009, 10321, 10729, 12409, 13681, 15121, 15289, 15361, 15601, 16561, 16729, 17041, 17209, 17761, 18169, 18481, 20089, 21529, 21601, 23761, 24001, 24169, 25609, 25849, 26641, 26881, 27529
Offset: 1
Keywords
Examples
Regarding 10009: - 10009 is a prime number, - 10009 = 41*240 + 169, - 10009 = 97^2 + 0*97*2 + 150*2^2 = 37^2 + 960*3^2, - hence 10009 belongs to this sequence.
Links
- David Brink, Five peculiar theorems on simultaneous representation of primes by quadratic forms, Journal of Number Theory 129(2) (2009), 464-468, doi:10.1016/j.jnt.2008.04.007, MR 2473893.
- Rémy Sigrist, PARI program for A325087
- Wikipedia, Kaplansky's theorem on quadratic forms
Programs
-
PARI
See Links section.
Comments