A325096 Number of maximal subsets of {1...n} with no binary carries.
1, 1, 1, 2, 2, 3, 4, 5, 5, 7, 9, 10, 12, 13, 14, 15, 15, 20, 25, 27, 32, 34, 36, 37, 42, 44, 46, 47, 49, 50, 51, 52, 52, 67, 82, 87, 102, 107, 112, 114, 129, 134, 139, 141, 146, 148, 150, 151, 166, 171, 176, 178, 183, 185, 187, 188, 193, 195, 197, 198, 200, 201
Offset: 0
Examples
The a(1) = 1 through a(9) = 7 maximal subsets: {1} {12} {3} {34} {25} {16} {7} {78} {69} {12} {124} {34} {25} {16} {168} {78} {124} {34} {25} {258} {168} {124} {34} {348} {249} {124} {1248} {258} {348} {1248}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8192
Crossrefs
Programs
-
Mathematica
binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]]; Table[Length[maxim[Select[Subsets[Range[n]],stableQ[#,Intersection[binpos[#1],binpos[#2]]!={}&]&]]],{n,0,10}]
Formula
a(2^n - 1) = A000110(n).
Extensions
a(15)-a(61) from Alois P. Heinz, Mar 28 2019
Comments