cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325110 Number of strict integer partitions of n with no binary containments.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 5, 2, 3, 2, 6, 3, 6, 7, 15, 8, 10, 6, 13, 6, 10, 12, 23, 13, 16, 16, 26, 21, 30, 37, 60, 43, 52, 42, 60, 42, 50, 54, 81, 59, 60, 66, 80, 74, 86, 108, 145, 119, 125, 126, 144, 134, 140, 170, 208, 189, 193, 221, 248, 253, 292, 323, 435, 392
Offset: 0

Views

Author

Gus Wiseman, Mar 28 2019

Keywords

Comments

A pair of positive integers is a binary containment if the positions of 1's in the reversed binary expansion of the first are a subset of the positions of 1's in the reversed binary expansion of the second.

Examples

			The a(1) = 1 through a(12) = 3 partitions (A = 10, B = 11, C = 12):
  (1)  (2)  (3)   (4)  (5)   (6)   (7)    (8)   (9)   (A)   (B)    (C)
            (21)       (41)  (42)  (43)   (53)  (63)  (82)  (65)   (84)
                                   (52)         (81)        (83)   (93)
                                   (61)                     (92)
                                   (421)                    (A1)
                                                            (821)
		

Crossrefs

Programs

  • Mathematica
    binpos[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&stableQ[#,SubsetQ[binpos[#1],binpos[#2]]&]&]],{n,0,30}]