cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325124 Number of divisible pairs of positive integers up to n with at least one binary carry.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 10, 12, 13, 16, 18, 20, 23, 25, 28, 32, 33, 35, 39, 41, 44, 48, 51, 53, 56, 59, 62, 66, 70, 72, 79, 81, 82, 86, 88, 92, 96, 98, 101, 105, 108, 110, 116, 118, 122, 128, 131, 133, 136, 139, 143, 147, 151, 153, 159, 163, 167, 171, 174, 176, 185
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2019

Keywords

Comments

Two positive integers are divisible if the first divides the second, and they have a binary carry if the positions of 1's in their reversed binary expansion overlap.

Examples

			The a(1) = 1 through a(8) = 13 pairs:
  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)  (1,1)
         (2,2)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)  (1,3)
                (2,2)  (2,2)  (1,5)  (1,5)  (1,5)  (1,5)
                (3,3)  (3,3)  (2,2)  (2,2)  (1,7)  (1,7)
                       (4,4)  (3,3)  (2,6)  (2,2)  (2,2)
                              (4,4)  (3,3)  (2,6)  (2,6)
                              (5,5)  (3,6)  (3,3)  (3,3)
                                     (4,4)  (3,6)  (3,6)
                                     (5,5)  (4,4)  (4,4)
                                     (6,6)  (5,5)  (5,5)
                                            (6,6)  (6,6)
                                            (7,7)  (7,7)
                                                   (8,8)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Tuples[Range[n],2],Divisible@@Reverse[#]&&Intersection[Position[Reverse[IntegerDigits[#[[1]],2]],1],Position[Reverse[IntegerDigits[#[[2]],2]],1]]!={}&]],{n,0,20}]

Formula

a(n) = A307230(n) + n.