A325133 Heinz number of the integer partition obtained by removing the inner lining, or, equivalently, the largest hook, of the integer partition with Heinz number n.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 5, 3, 2, 1, 1, 4, 3, 1, 2, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 2, 3, 1, 2, 1, 1, 6, 1, 5, 2, 1, 1, 8, 1, 1, 2, 3, 1, 2, 1, 1, 4, 5, 1, 2, 1, 3, 1, 1, 5, 4, 3, 1, 2, 1, 1, 6
Offset: 1
Keywords
Examples
The partition with Heinz number 715 is (6,5,3), with diagram o o o o o o o o o o o o o o which has inner lining o o o o o o o o or largest hook o o o o o o o o both of which have complement o o o o o o which is the partition (4,2) with Heinz number 21, so a(715) = 21.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[If[n==1,1,Times@@Prime/@DeleteCases[Most[primeMS[n]]-1,0]],{n,100}]
-
PARI
A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1])); A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) }; A325133(n) = A052126(A064989(n)); \\ Antti Karttunen, Apr 14 2019
Extensions
More terms from Antti Karttunen, Apr 14 2019
Comments