cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325133 Heinz number of the integer partition obtained by removing the inner lining, or, equivalently, the largest hook, of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 1, 5, 3, 2, 1, 1, 4, 3, 1, 2, 1, 1, 2, 1, 1, 4, 1, 3, 2, 1, 1, 2, 3, 1, 2, 1, 1, 6, 1, 5, 2, 1, 1, 8, 1, 1, 2, 3, 1, 2, 1, 1, 4, 5, 1, 2, 1, 3, 1, 1, 5, 4, 3, 1, 2, 1, 1, 6
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
or largest hook
  o o o o o o
  o
  o
both of which have complement
  o o o o
  o o
which is the partition (4,2) with Heinz number 21, so a(715) = 21.
		

Crossrefs

Positions of ones are A093641 (Heinz numbers of hooks). The number of iterations required to reach 1 starting with n is A257990(n).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,1,Times@@Prime/@DeleteCases[Most[primeMS[n]]-1,0]],{n,100}]
  • PARI
    A052126(n) = if(1==n,n,n/vecmax(factor(n)[, 1]));
    A064989(n) = { my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f) };
    A325133(n) = A052126(A064989(n)); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = A064989(A052126(n)) = A052126(A064989(n)).

Extensions

More terms from Antti Karttunen, Apr 14 2019