A325135 Size of the integer partition with Heinz number n after its inner lining, or, equivalently, its largest hook, is removed.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 2, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 3, 1, 0, 0, 3, 0, 0, 1, 2, 0, 1, 0, 0, 2, 3, 0, 1, 0, 2, 0, 0, 3, 2, 2, 0, 1, 0, 0, 3
Offset: 1
Keywords
Examples
The partition with Heinz number 715 is (6,5,3), with diagram o o o o o o o o o o o o o o which has inner lining o o o o o o o o or largest hook o o o o o o o o both of which have complement o o o o o o which has size 6, so a(715) = 6.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
Crossrefs
Programs
-
Mathematica
Table[If[n==1,0,Total[Most[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]-1]],{n,100}]
-
PARI
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); } A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1]))); A325135(n) = if(1==n,0,(1+A056239(n)-bigomega(n)-A061395(n))); \\ Antti Karttunen, Apr 14 2019
Formula
Extensions
More terms from Antti Karttunen, Apr 14 2019
Comments