A325148 Squares which can be expressed as the product of a number and its reversal.
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 400, 484, 900, 1089, 1600, 1936, 2500, 3025, 3600, 4356, 4900, 5929, 6400, 7744, 8100, 9801, 10000, 10201, 12100, 12321, 14641, 17161, 19881, 22801, 25921, 29241, 32761, 36481, 40000, 40804, 44944, 48400, 49284, 53824, 58564, 63504, 68644, 73984, 79524, 85264
Offset: 1
Examples
Zero ways: 169 = 13^2 cannot be equal to k * rev(k). One way: 400 = 200 * 2; 10201 = 101 * 101; 162409 = 169 * 961. Two ways: 7683984 = 2772 * 2772 = 1584 * 4851. Three ways: 6350400 = 14400 * 441 = 25200 * 252 = 44100 * 144.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms for n = 1..231 from R. J. Mathar)
- Bernard Schott, The different ways
Crossrefs
Programs
-
Maple
isA305231 := proc(n) local d; for d in numtheory[divisors](n) do if d = digrev(n/d) then return true ; end if; end do: false ; end proc: n := 1; for i from 0 to 4000 do i2 := i^2 ; if isA305231(i2) then printf("%d %d\n",n,i2) ; n := n+1 ; end if; end do: # R. J. Mathar, Aug 09 2019
-
Mathematica
{0}~Join~Select[Range[10^3]^2,(d1=Select[Divisors[n=#],#<=Sqrt@n&];Or@@Table[d1[[k]]==(IntegerReverse/@(n/d1))[[k]],{k,Length@d1}])&] (* Giorgos Kalogeropoulos, Jun 09 2021 *)
-
Python
from sympy import divisors A325148_list = [0] for n in range(10**6): n2 = n**2 for m in divisors(n2): if m > n: break if m == int(str(n2//m)[::-1]): A325148_list.append(n2) break # Chai Wah Wu, Jun 09 2021
Formula
Extensions
Definition corrected by N. J. A. Sloane, Aug 01 2019
Comments