A325165 Regular triangle read by rows where T(n,k) is the number of integer partitions of n whose inner lining partition has last (smallest) part equal to k.
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 2, 0, 0, 0, 5, 0, 3, 2, 0, 0, 0, 6, 0, 4, 4, 0, 0, 0, 0, 7, 0, 5, 6, 3, 0, 0, 0, 0, 8, 0, 7, 8, 6, 0, 0, 0, 0, 0, 9, 0, 9, 10, 9, 4, 0, 0, 0, 0, 0, 10, 0, 13, 12, 12, 8, 0, 0, 0, 0, 0, 0, 11
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 2 0 0 0 3 0 1 0 0 4 0 2 0 0 0 5 0 3 2 0 0 0 6 0 4 4 0 0 0 0 7 0 5 6 3 0 0 0 0 8 0 7 8 6 0 0 0 0 0 9 0 9 10 9 4 0 0 0 0 0 10 0 13 12 12 8 0 0 0 0 0 0 11 0 17 16 15 12 5 0 0 0 0 0 0 12 0 24 20 18 16 10 0 0 0 0 0 0 0 13 0 31 28 21 20 15 6 0 0 0 0 0 0 0 14 0 42 36 27 24 20 12 0 0 0 0 0 0 0 0 15 0 54 50 33 28 25 18 7 0 0 0 0 0 0 0 0 16 0 71 64 45 32 30 24 14 0 0 0 0 0 0 0 0 0 17 0 90 86 57 40 35 30 21 8 0 0 0 0 0 0 0 0 0 18 Row n = 9 counts the following partitions (empty columns not shown): (72) (63) (54) (9) (333) (522) (432) (81) (621) (531) (441) (711) (5211) (4221) (3222) (6111) (42111) (4311) (3321) (51111) (321111) (32211) (22221) (411111) (2211111) (33111) (3111111) (222111) (21111111) (111111111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Crossrefs
Programs
-
Mathematica
pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]]; Table[Length[Select[IntegerPartitions[n],Total[pml[#]]==k&]],{n,0,10},{k,0,n}]
-
PARI
T(n) = {my(v=Vec(1+sum(k=1, sqrtint(n), x^(k^2)/((1-y*x^k)*prod(j=1, k-1, 1 - x^j + O(x^(n+1-k^2))))^2))); vector(#v, i, Vecrev(v[i], -i))} { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 19 2023
Formula
G.f.: A(x,y) = 1 + Sum_{k>=1} x^(k^2)/((1 - y*x^k) * Product_{j=1..k-1} (1 - x^j))^2. - Andrew Howroyd, Jan 19 2023
Comments