A325168 Number of integer partitions of n with origin-to-boundary graph-distance equal to 2.
0, 0, 0, 1, 3, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44, 45, 48, 49, 52, 53, 56, 57, 60, 61, 64, 65, 68, 69, 72, 73, 76, 77, 80, 81, 84, 85, 88, 89, 92, 93, 96, 97, 100, 101, 104, 105, 108, 109, 112, 113, 116, 117, 120, 121
Offset: 0
Examples
The a(3) = 1 through a(10) = 16 partitions: (21) (22) (32) (33) (43) (44) (54) (55) (31) (41) (42) (52) (53) (63) (64) (211) (221) (51) (61) (62) (72) (73) (311) (222) (511) (71) (81) (82) (2111) (411) (2221) (611) (711) (91) (2211) (4111) (2222) (6111) (811) (3111) (22111) (5111) (22221) (7111) (21111) (31111) (22211) (51111) (22222) (211111) (41111) (222111) (61111) (221111) (411111) (222211) (311111) (2211111) (511111) (2111111) (3111111) (2221111) (21111111) (4111111) (22111111) (31111111) (211111111)
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- N. Guru Sharan, Rook decomposition of the Partition function, arXiv:2507.20260 [math.CO], 2025. See p. 5.
- N. Guru Sharan and Armin Straub, Partitions with Durfee triangles of fixed size, arXiv:2507.19047 [math.CO], 2025. See p. 10.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Crossrefs
Programs
-
Mathematica
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otb[#]==2&]],{n,0,30}]
-
PARI
concat([0,0,0], Vec(x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)) + O(x^80))) \\ Colin Barker, Apr 08 2019
Formula
From Colin Barker, Apr 08 2019: (Start)
G.f.: x^3*(1 + 2*x + x^2 + x^3 - x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7.
a(n) = 2*n - 4 for n>4 and even.
a(n) = 2*n - 5 for n>4 and odd.
(End)
Comments