cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A006918 a(n) = binomial(n+3, 3)/4 for odd n, n*(n+2)*(n+4)/24 for even n.

Original entry on oeis.org

0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 112, 140, 168, 204, 240, 285, 330, 385, 440, 506, 572, 650, 728, 819, 910, 1015, 1120, 1240, 1360, 1496, 1632, 1785, 1938, 2109, 2280, 2470, 2660, 2870, 3080, 3311, 3542, 3795, 4048, 4324, 4600, 4900, 5200, 5525, 5850, 6201, 6552, 6930
Offset: 0

Views

Author

Keywords

Comments

Maximal number of inconsistent triples in a tournament on n+2 nodes [Kac]. - corrected by Leen Droogendijk, Nov 10 2014
a(n-4) is the number of aperiodic necklaces (Lyndon words) with 4 black beads and n-4 white beads.
a(n-3) is the maximum number of squares that can be formed from n lines, for n>=3. - Erich Friedman; corrected by Leen Droogendijk, Nov 10 2014
Number of trees with diameter 4 where at most 2 vertices 1 away from the graph center have degree > 2. - Jon Perry, Jul 11 2003
a(n+1) is the number of partitions of n into parts of two kinds, with at most two parts of each kind. Also a(n-3) is the number of partitions of n with Durfee square of size 2. - Franklin T. Adams-Watters, Jan 27 2006
Factoring the g.f. as x/(1-x)^2 times 1/(1-x^2)^2 we find that the sequence equals (1, 2, 3, 4, ...) convolved with (1, 0, 2, 0, 3, 0, 4, ...), A000027 convolved with its aerated variant. - Gary W. Adamson, May 01 2009
Starting with "1" = triangle A171238 * [1,2,3,...]. - Gary W. Adamson, Dec 05 2009
The Kn21, Kn22, Kn23, Fi2 and Ze2 triangle sums, see A180662 for their definitions, of the Connell-Pol triangle A159797 are linear sums of shifted versions of this sequence, e.g., Kn22(n) = a(n+1) + a(n) + 2*a(n-1) + a(n-2) and Fi2(n) = a(n) + 4*a(n-1) + a(n-2). - Johannes W. Meijer, May 20 2011
For n>3, a(n-4) is the number of (w,x,y,z) having all terms in {1,...,n} and w+x+y+z=|x-y|+|y-z|. - Clark Kimberling, May 23 2012
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w+x+y < |w-x|+|x-y|. - Clark Kimberling, Jun 13 2012
For n>0 number of inequivalent (n-1) X 2 binary matrices, where equivalence means permutations of rows or columns or the symbol set. - Alois P. Heinz, Aug 17 2014
Number of partitions p of n+5 such that p[3] = 2. Examples: a(1)=1 because we have (2,2,2); a(2)=2 because we have (2,2,2,1) and (3,2,2); a(3)=5 because we have (2,2,2,1,1), (2,2,2,2), (3,2,2,1), (3,3,2), and (4,2,2). See the R. P. Stanley reference. - Emeric Deutsch, Oct 28 2014
Sum over each antidiagonal of A243866. - Christopher Hunt Gribble, Apr 02 2015
Number of nonisomorphic outer planar graphs of order n>=3, size n+2, and maximum degree 3. - Christian Barrientos and Sarah Minion, Feb 27 2018
a(n) is the number of 2413-avoiding odd Grassmannian permutations of size n+1. - Juan B. Gil, Mar 09 2023

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 14*x^5 + 20*x^6 + 30*x^7 + 40*x^8 + 55*x^9 + ...
From _Gus Wiseman_, Apr 06 2019: (Start)
The a(4 - 3) = 1 through a(8 - 3) = 14 integer partitions with Durfee square of length 2 are the following (see Franklin T. Adams-Watters's second comment). The Heinz numbers of these partitions are given by A325164.
  (22)  (32)   (33)    (43)     (44)
        (221)  (42)    (52)     (53)
               (222)   (322)    (62)
               (321)   (331)    (332)
               (2211)  (421)    (422)
                       (2221)   (431)
                       (3211)   (521)
                       (22111)  (2222)
                                (3221)
                                (3311)
                                (4211)
                                (22211)
                                (32111)
                                (221111)
The a(0 + 1) = 1 through a(4 + 1) = 14 integer partitions of n into parts of two kinds with at most two parts of each kind are the following (see Franklin T. Adams-Watters's first comment).
  ()()  ()(1)  ()(2)   ()(3)    ()(4)
        (1)()  (2)()   (3)()    (4)()
               ()(11)  (1)(2)   (1)(3)
               (1)(1)  ()(21)   ()(22)
               (11)()  (2)(1)   (2)(2)
                       (21)()   (22)()
                       (1)(11)  ()(31)
                       (11)(1)  (3)(1)
                                (31)()
                                (11)(2)
                                (1)(21)
                                (2)(11)
                                (21)(1)
                                (11)(11)
The a(6 - 5) = 1 through a(10 - 5) = 14 integer partitions whose third part is 2 are the following (see Emeric Deutsch's comment). The Heinz numbers of these partitions are given by A307373.
  (222)  (322)   (332)    (432)     (442)
         (2221)  (422)    (522)     (532)
                 (2222)   (3222)    (622)
                 (3221)   (3321)    (3322)
                 (22211)  (4221)    (4222)
                          (22221)   (4321)
                          (32211)   (5221)
                          (222111)  (22222)
                                    (32221)
                                    (33211)
                                    (42211)
                                    (222211)
                                    (322111)
                                    (2221111)
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 147.
  • M. Kac, An example of "counting without counting", Philips Res. Reports, 30 (1975), 20*-22* [Special issue in honour of C. J. Bouwkamp].
  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, 2004.
  • K. B. Reid and L. W. Beineke "Tournaments", pp. 169-204 in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, p. 186, Theorem 6.11.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 2nd ed., 2012, Exercise 4.16, pp. 530, 552.
  • W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 33.

Crossrefs

Cf. A000031, A001037, A028723, A051168. a(n) = T(n,4), array T as in A051168.
Cf. A000094.
Cf. A171238. - Gary W. Adamson, Dec 05 2009
Row sums of A173997. - Gary W. Adamson, Mar 05 2010
Column k=2 of A242093. Column k=2 of A115720 and A115994.

Programs

  • Haskell
    a006918 n = a006918_list !! n
    a006918_list = scanl (+) 0 a008805_list
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Magma
    [Floor(Binomial(n+4, 4)/(n+4))-Floor((n+2)/8)*(1+(-1)^n)/2: n in [0..60]]; // Vincenzo Librandi, Nov 10 2014
  • Maple
    with(combstruct):ZL:=[st,{st=Prod(left,right),left=Set(U,card=r),right=Set(U,card=r),U=Sequence(Z,card>=3)}, unlabeled]: subs(r=1,stack): seq(count(subs(r=2,ZL),size=m),m=11..58) ; # Zerinvary Lajos, Mar 09 2007
    A006918 := proc(n)
        if type(n,'even') then
            n*(n+2)*(n+4)/24 ;
        else
            binomial(n+3,3)/4 ;
        fi ;
    end proc: # R. J. Mathar, May 17 2016
  • Mathematica
    f[n_]:=If[EvenQ[n],(n(n+2)(n+4))/24,Binomial[n+3,3]/4]; Join[{0},Array[f,60]]  (* Harvey P. Dale, Apr 20 2011 *)
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    Table[Length[Select[IntegerPartitions[n],durf[#]==2&]],{n,0,30}] (* Gus Wiseman, Apr 06 2019 *)
  • PARI
    { parttrees(n)=local(pt,k,nk); if (n%2==0, pt=(n/2+1)^2, pt=ceil(n/2)*(ceil(n/2)+1)); pt+=floor(n/2); for (x=1,floor(n/2),pt+=floor(x/2)+floor((n-x)/2)); if (n%2==0 && n>2, pt-=floor(n/4)); k=1; while (3*k<=n, for (x=k,floor((n-k)/2), pt+=floor(k/2); if (x!=k, pt+=floor(x/2)); if ((n-x-k)!=k && (n-x-k)!=x, pt+=floor((n-x-k)/2))); k++); pt }
    
  • PARI
    {a(n) = n += 2; (n^3 - n * (2-n%2)^2) / 24}; /* Michael Somos, Aug 15 2009 */
    

Formula

G.f.: x/((1-x)^2*(1-x^2)^2) = x/((1+x)^2*(1-x)^4).
0, 0, 0, 1, 2, 5, 8, 14, ... has a(n) = (Sum_{k=0..n} floor(k(n-k)/2))/2. - Paul Barry, Sep 14 2003
0, 0, 0, 0, 0, 1, 2, 5, 8, 14, 20, 30, 40, 55, ... has a(n) = binomial(floor(1/2 n), 3) + binomial(floor(1/2 n + 1/2), 3) [Eke]. - N. J. A. Sloane, May 12 2012
a(0)=0, a(1)=1, a(n) = (2/(n-1))*a(n-1) + ((n+3)/(n-1))*a(n-2). - Benoit Cloitre, Jun 28 2004
a(n) = floor(binomial(n+4, 4)/(n+4)) - floor((n+2)/8)(1+(-1)^n)/2. - Paul Barry, Jan 01 2005
a(n+1) = a(n) + binomial(floor(n/2)+2,2), i.e., first differences are A008805. Convolution of A008619 with itself, then shifted right (or A004526 with itself, shifted left by 3). - Franklin T. Adams-Watters, Jan 27 2006
a(n+1) = (A027656(n) + A003451(n+5))/2 with a(1)=0. - Yosu Yurramendi, Sep 12 2008
Linear recurrence: a(n) = 2a(n-1) + a(n-2) - 4a(n-3) + a(n-4) + 2a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
Euler transform of length 2 sequence [2, 2]. - Michael Somos, Aug 15 2009
a(n) = -a(-4-n) for all n in Z.
a(n+1) + a(n) = A002623(n). - Johannes W. Meijer, May 20 2011
a(n) = (n+2)*(2*n*(n+4)-3*(-1)^n+3)/48. - Bruno Berselli, May 21 2011
a(2n) = A007290(n+2). - Jon Perry, Nov 10 2014
G.f.: (1/(1-x)^4-1/(1-x^2)^2)/4. - Herbert Kociemba, Oct 23 2016
E.g.f.: (x*(18 + 9*x + x^2)*cosh(x) + (6 + 15*x + 9*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, Dec 07 2021
From Amiram Eldar, Mar 20 2022: (Start)
Sum_{n>=1} 1/a(n) = 75/4 - 24*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 69/4 - 24*log(2). (End)

A325188 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 0, 2, 1, 0, 0, 2, 3, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 2, 9, 4, 0, 0, 0, 0, 0, 2, 12, 8, 0, 0, 0, 0, 0, 0, 2, 13, 15, 0, 0, 0, 0, 0, 0, 0, 2, 16, 23, 1, 0, 0, 0, 0, 0, 0, 0, 2, 17, 32, 5, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The origin-to-boundary graph-distance of a Young diagram is the minimum number of unit steps right or down from the upper-left square to a nonsquare in the lower-right quadrant. It is also the side-length of the maximum triangular partition contained inside the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  2  0
  0  2  1  0
  0  2  3  0  0
  0  2  5  0  0  0
  0  2  8  1  0  0  0
  0  2  9  4  0  0  0  0
  0  2 12  8  0  0  0  0  0
  0  2 13 15  0  0  0  0  0  0
  0  2 16 23  1  0  0  0  0  0  0
  0  2 17 32  5  0  0  0  0  0  0  0
  0  2 20 43 12  0  0  0  0  0  0  0  0
  0  2 21 54 24  0  0  0  0  0  0  0  0  0
  0  2 24 67 42  0  0  0  0  0  0  0  0  0  0
  0  2 25 82 66  1  0  0  0  0  0  0  0  0  0  0
		

Crossrefs

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otb[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=#p); for(i=1, #p, w=min(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A368986(n).

A325165 Regular triangle read by rows where T(n,k) is the number of integer partitions of n whose inner lining partition has last (smallest) part equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 2, 0, 0, 0, 5, 0, 3, 2, 0, 0, 0, 6, 0, 4, 4, 0, 0, 0, 0, 7, 0, 5, 6, 3, 0, 0, 0, 0, 8, 0, 7, 8, 6, 0, 0, 0, 0, 0, 9, 0, 9, 10, 9, 4, 0, 0, 0, 0, 0, 10, 0, 13, 12, 12, 8, 0, 0, 0, 0, 0, 0, 11
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The k-th part of the inner lining partition of an integer partition is the number of squares in its Young diagram that are k diagonal steps from the lower-right boundary. For example, the partition (6,5,5,3) has diagram
o o o o o o
o o o o o
o o o o o
o o o
which has diagonal distances from the lower-right boundary equal to
3 3 3 2 1 1
3 2 2 2 1
2 2 1 1 1
1 1 1
so the inner lining sequence is (9,6,4) with last part 4, so (6,5,5,3) is counted under T(19,4).

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  0  3
  0  1  0  0  4
  0  2  0  0  0  5
  0  3  2  0  0  0  6
  0  4  4  0  0  0  0  7
  0  5  6  3  0  0  0  0  8
  0  7  8  6  0  0  0  0  0  9
  0  9 10  9  4  0  0  0  0  0 10
  0 13 12 12  8  0  0  0  0  0  0 11
  0 17 16 15 12  5  0  0  0  0  0  0 12
  0 24 20 18 16 10  0  0  0  0  0  0  0 13
  0 31 28 21 20 15  6  0  0  0  0  0  0  0 14
  0 42 36 27 24 20 12  0  0  0  0  0  0  0  0 15
  0 54 50 33 28 25 18  7  0  0  0  0  0  0  0  0 16
  0 71 64 45 32 30 24 14  0  0  0  0  0  0  0  0  0 17
  0 90 86 57 40 35 30 21  8  0  0  0  0  0  0  0  0  0 18
Row n = 9 counts the following partitions (empty columns not shown):
  (72)       (63)      (54)     (9)
  (333)      (522)     (432)    (81)
  (621)      (531)     (441)    (711)
  (5211)     (4221)    (3222)   (6111)
  (42111)    (4311)    (3321)   (51111)
  (321111)   (32211)   (22221)  (411111)
  (2211111)  (33111)            (3111111)
             (222111)           (21111111)
                                (111111111)
		

Crossrefs

Row sums are A000041. Column k = 1 is A188674.

Programs

  • Mathematica
    pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
    Table[Length[Select[IntegerPartitions[n],Total[pml[#]]==k&]],{n,0,10},{k,0,n}]
  • PARI
    T(n) = {my(v=Vec(1+sum(k=1, sqrtint(n), x^(k^2)/((1-y*x^k)*prod(j=1, k-1, 1 - x^j + O(x^(n+1-k^2))))^2))); vector(#v, i, Vecrev(v[i], -i))}
    { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 19 2023

Formula

G.f.: A(x,y) = 1 + Sum_{k>=1} x^(k^2)/((1 - y*x^k) * Product_{j=1..k-1} (1 - x^j))^2. - Andrew Howroyd, Jan 19 2023

A325197 Heinz numbers of integer partitions such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is 2.

Original entry on oeis.org

5, 8, 14, 21, 24, 25, 27, 28, 35, 36, 40, 54, 56, 66, 98, 99, 110, 120, 125, 132, 135, 147, 154, 165, 168, 175, 180, 189, 196, 198, 200, 220, 225, 231, 245, 250, 252, 264, 270, 275, 280, 297, 300, 308, 375, 378, 385, 390, 392, 396, 440, 450, 500, 546, 585, 594
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325199.

Examples

			The sequence of terms together with their prime indices begins:
    5: {3}
    8: {1,1,1}
   14: {1,4}
   21: {2,4}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   35: {3,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   54: {1,2,2,2}
   56: {1,1,1,4}
   66: {1,2,5}
   98: {1,4,4}
   99: {2,2,5}
  110: {1,3,5}
  120: {1,1,1,2,3}
  125: {3,3,3}
  132: {1,1,2,5}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Select[Range[1000],otbmax[primeptn[#]]-otb[primeptn[#]]==2&]

A325182 Number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2.

Original entry on oeis.org

0, 0, 0, 2, 2, 1, 2, 4, 7, 6, 5, 4, 5, 9, 12, 15, 14, 12, 10, 9, 11, 15, 21, 24, 28, 26, 24, 20, 18, 17, 19, 25, 31, 38, 42, 46, 44, 41, 36, 32, 29, 28, 31, 37, 46, 53, 62, 66, 71, 68, 65, 58, 53, 47, 44, 43, 46, 54, 63, 74, 83, 93, 98, 103, 100, 96, 88, 81
Offset: 0

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The maximal square contained in the Young diagram of an integer partition is called its Durfee square, and its length is the rank of the partition.

Examples

			The a(3) = 2 through a(14) = 12 partitions:
  3    31   311  42    43    44    432   442   533    543    544    554
  111  211       2211  421   422   441   3322  4322   4422   553    5333
                       2221  431   3222  4222  4421   5331   5332   5432
                       3211  2222  3321  4321  33311  33321  5431   5441
                             3221  4221  4411         43311  33322  5531
                             3311  4311                      33331  33332
                             4211                            43321  43322
                                                             44311  43331
                                                             53311  44321
                                                                    44411
                                                                    53321
                                                                    54311
		

References

  • Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.

Crossrefs

Programs

  • Mathematica
    durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]];
    codurf[ptn_]:=Max[Length[ptn],Max[ptn]];
    Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==2&]],{n,0,30}]

A382682 Number of integer partitions of n with origin-to-boundary graph-distance equal to 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 8, 15, 23, 32, 43, 54, 67, 82, 97, 114, 133, 152, 173, 196, 219, 244, 271, 298, 327, 358, 389, 422, 457, 492, 529, 568, 607, 648, 691, 734, 779, 826, 873, 922, 973, 1024, 1077, 1132, 1187, 1244, 1303, 1362, 1423, 1486, 1549, 1614, 1681, 1748, 1817, 1888, 1959
Offset: 0

Views

Author

N Guru Sharan, Jun 03 2025

Keywords

Comments

Also the number of partitions of n with a fixed Durfee triangle of size 3.
Column k=3 of the triangle in A325188.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(q^6 + 2 q^7 + q^8 + 2 q^9 - q^10 - q^12 - q^13 + q^14)/((1 - q)^3 (1 + q + q^2)), {q, 0, 200}],q]

Formula

G.f.: q^6*(1 + 2*q + q^2 + 2*q^3 - q^4 - q^6 - q^7 + q^8)/((1 - q)^3*(1 + q + q^2)).
9*a(n) = 2*A099837(n+3)+6*n^2+59-45*n for n>9. - R. J. Mathar, Jun 24 2025

A307370 Number of integer partitions of n with 2 distinct parts, none appearing more than twice.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 4, 6, 7, 7, 10, 10, 11, 12, 15, 13, 17, 16, 19, 18, 22, 19, 25, 22, 26, 24, 30, 25, 32, 28, 34, 30, 37, 31, 40, 34, 41, 36, 45, 37, 47, 40, 49, 42, 52, 43, 55, 46, 56, 48, 60, 49, 62, 52, 64, 54, 67, 55, 70, 58, 71, 60, 75, 61, 77, 64, 79, 66
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2019

Keywords

Comments

The Heinz numbers of these partitions appear to be given by A296205.

Examples

			The a(3) = 1 through a(10) = 10 partitions:
  (21)  (31)   (32)   (42)    (43)   (53)    (54)   (64)
        (211)  (41)   (51)    (52)   (62)    (63)   (73)
               (221)  (411)   (61)   (71)    (72)   (82)
               (311)  (2211)  (322)  (332)   (81)   (91)
                              (331)  (422)   (441)  (433)
                              (511)  (611)   (522)  (442)
                                     (3311)  (711)  (622)
                                                    (811)
                                                    (3322)
                                                    (4411)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==2&&Max@@Length/@Split[#]<=2&]],{n,0,30}]
  • PARI
    concat([0,0,0], Vec(x^3*(1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 4*x^5) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Apr 08 2019

Formula

From Colin Barker, Apr 08 2019: (Start)
G.f.: x^3*(1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 4*x^5) / ((1 - x)^2*(1 + x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = -a(n-1) + a(n-3) + 2*a(n-4) + a(n-5) - a(n-7) - a(n-8) for n>8. (End)
a(n) = (27*n + 3*(n - 7)*(-1)^n - 53 - 6*A056594(n) + 8*A061347(n))/24 for n > 0. - Stefano Spezia, Feb 20 2024

A384562 Number of integer partitions of n with origin-to-boundary graph-distance equal to 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 12, 24, 42, 66, 98, 135, 181, 233, 298, 367, 452, 543, 651, 765, 899, 1039, 1202, 1371, 1564, 1765, 1993, 2227, 2491, 2763, 3066, 3377, 3722, 4075, 4465, 4863, 5299, 5745, 6232, 6727, 7266, 7815, 8409, 9013, 9665, 10327, 11040, 11763, 12538, 13325, 14167, 15019, 15929, 16851, 17832, 18825, 19880, 20947, 22079, 23223, 24433, 25657, 26950
Offset: 0

Views

Author

N Guru Sharan, Jun 03 2025

Keywords

Comments

This also counts the number of partitions of n with a fixed Durfee triangle of size 4. This is the column k=4 of the triangle in A325188.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(q^10 (1 + 4q + 6 q^2 + 7 q^3 + 6 q^4 + 2 q^5 - 5 q^7 - 5 q^8 - 5 q^9 + q^11 + 3 q^12 + 2 q^13 - q^16))/((1 - q)(1 - q^2)(1 - q^3)(1 - q^4)), {q, 0, 50}], q]

Formula

G.f.: q^10*(1 + 4*q + 6*q^2 + 7*q^3 + 6*q^4 + 2*q^5 - 5*q^7 - 5*q^8 - 5*q^9 + q^11 + 3*q^12 + 2*q^13 - q^16)/((1 - q)*(1 - q^2)*(1 - q^3)*(1 - q^4)).
Showing 1-8 of 8 results.