A325180 Heinz number of integer partitions such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is 2.
5, 8, 10, 12, 20, 21, 35, 36, 42, 49, 54, 60, 63, 70, 81, 84, 90, 98, 100, 105, 126, 135, 140, 147, 150, 189, 196, 210, 225, 275, 294, 315, 385, 441, 500, 539, 550, 605, 700, 750, 770, 825, 847, 980, 1050, 1078, 1100, 1125, 1155, 1210, 1250, 1331, 1372, 1375
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 5: {3} 8: {1,1,1} 10: {1,3} 12: {1,1,2} 20: {1,1,3} 21: {2,4} 35: {3,4} 36: {1,1,2,2} 42: {1,2,4} 49: {4,4} 54: {1,2,2,2} 60: {1,1,2,3} 63: {2,2,4} 70: {1,3,4} 81: {2,2,2,2} 84: {1,1,2,4} 90: {1,2,2,3} 98: {1,4,4} 100: {1,1,3,3} 105: {2,3,4}
Links
- Gus Wiseman, Young diagrams corresponding to the first 96 terms.
Crossrefs
Programs
-
Mathematica
durf[n_]:=Length[Select[Range[PrimeOmega[n]],Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]][[#]]>=#&]]; codurf[n_]:=If[n==1,0,Max[PrimeOmega[n],PrimePi[FactorInteger[n][[-1,1]]]]]; Select[Range[1000],codurf[#]-durf[#]==2&]
Comments