A325185 Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
2, 6, 9, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 45, 46, 48, 50, 52, 56, 58, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 110, 112, 114, 116, 117, 118, 120, 122, 124, 125, 126, 130, 132
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 2: {1} 6: {1,2} 9: {2,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 20: {1,1,3} 22: {1,5} 24: {1,1,1,2} 26: {1,6} 28: {1,1,4} 30: {1,2,3} 34: {1,7} 38: {1,8} 40: {1,1,1,3} 42: {1,2,4} 44: {1,1,5} 45: {2,2,3} 46: {1,9} 48: {1,1,1,1,2}
Links
- Eric Weisstein's World of Mathematics, Graph Distance.
- Gus Wiseman, Young diagrams for the first 25 terms.
Crossrefs
Programs
-
Mathematica
hptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Select[Range[2,100],otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1,0]]&]
Comments