A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2.
3, 4, 15, 18, 21, 25, 27, 33, 36, 39, 51, 57, 69, 72, 87, 93, 105, 111, 123, 129, 141, 144, 147, 150, 159, 165, 175, 177, 183, 195, 201, 213, 219, 225, 231, 237, 245, 249, 250, 255, 267, 273, 275, 285, 288, 291, 300, 303, 309, 321, 325, 327, 339, 343, 345, 357
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 3: {2} 4: {1,1} 15: {2,3} 18: {1,2,2} 21: {2,4} 25: {3,3} 27: {2,2,2} 33: {2,5} 36: {1,1,2,2} 39: {2,6} 51: {2,7} 57: {2,8} 69: {2,9} 72: {1,1,1,2,2} 87: {2,10} 93: {2,11} 105: {2,3,4} 111: {2,12} 123: {2,13} 129: {2,14}
Links
- Eric Weisstein's World of Mathematics, Graph Distance.
- Gus Wiseman, Young diagrams for the first 25 terms.
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; Select[Range[100],Apply[Plus,If[#==1,{},FixedPointList[corpos,ptnmat[primeptn[#]]][[-3]]],{0,1}]==2&]
Comments