cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325186 Heinz numbers of integer partitions whose Young diagram has last part of its origin-to-boundary partition equal to 2.

Original entry on oeis.org

3, 4, 15, 18, 21, 25, 27, 33, 36, 39, 51, 57, 69, 72, 87, 93, 105, 111, 123, 129, 141, 144, 147, 150, 159, 165, 175, 177, 183, 195, 201, 213, 219, 225, 231, 237, 245, 249, 250, 255, 267, 273, 275, 285, 288, 291, 300, 303, 309, 321, 325, 327, 339, 343, 345, 357
Offset: 1

Views

Author

Gus Wiseman, Apr 08 2019

Keywords

Comments

The k-th part of the origin-to-boundary partition of a Young diagram is the number of squares graph-distance k from the lower-right boundary.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    4: {1,1}
   15: {2,3}
   18: {1,2,2}
   21: {2,4}
   25: {3,3}
   27: {2,2,2}
   33: {2,5}
   36: {1,1,2,2}
   39: {2,6}
   51: {2,7}
   57: {2,8}
   69: {2,9}
   72: {1,1,1,2,2}
   87: {2,10}
   93: {2,11}
  105: {2,3,4}
  111: {2,12}
  123: {2,13}
  129: {2,14}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1];
    corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0];
    Select[Range[100],Apply[Plus,If[#==1,{},FixedPointList[corpos,ptnmat[primeptn[#]]][[-3]]],{0,1}]==2&]