A325190 Number of integer partitions of n whose Young diagram has last part of its origin-to-boundary partition equal to 2.
0, 0, 2, 0, 0, 2, 4, 2, 2, 4, 8, 10, 12, 10, 14, 20, 28, 36, 44, 46, 56, 66, 86, 108, 136, 160, 190, 214, 252, 298, 364, 434, 524, 620, 728, 834, 966, 1112, 1306, 1522, 1788, 2088, 2448, 2822, 3256, 3720, 4264, 4876, 5610, 6434, 7420
Offset: 0
Keywords
Examples
The a(2) = 1 through a(11) = 10 partitions: (2) (32) (33) (52) (62) (72) (82) (92) (11) (221) (42) (22111) (221111) (432) (433) (443) (222) (3321) (442) (533) (2211) (2211111) (532) (542) (3322) (632) (3331) (3332) (33211) (33221) (22111111) (33311) (332111) (221111111)
Links
- Eric Weisstein's World of Mathematics, Graph Distance.
Programs
-
Mathematica
ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1]; corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0]; Table[Length[Select[IntegerPartitions[n],Apply[Plus,If[#=={},{},FixedPointList[corpos,ptnmat[#]][[-3]]],{0,1}]==2&]],{n,30}]
Comments