A325192 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal square containing and the maximal square contained in the Young diagram is k.
1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 1, 0, 2, 2, 0, 0, 2, 1, 2, 2, 0, 0, 3, 2, 2, 2, 2, 0, 0, 2, 4, 3, 2, 2, 2, 0, 0, 1, 7, 4, 4, 2, 2, 2, 0, 1, 0, 6, 8, 5, 4, 2, 2, 2, 0, 0, 2, 5, 11, 8, 6, 4, 2, 2, 2, 0, 0, 3, 4, 12, 12, 9, 6, 4, 2, 2, 2, 0, 0, 4, 5, 13, 17, 12, 10, 6, 4, 2, 2, 2, 0
Offset: 0
Examples
Triangle begins: 1 1 0 0 2 0 0 1 2 0 1 0 2 2 0 0 2 1 2 2 0 0 3 2 2 2 2 0 0 2 4 3 2 2 2 0 0 1 7 4 4 2 2 2 0 1 0 6 8 5 4 2 2 2 0 0 2 5 11 8 6 4 2 2 2 0 0 3 4 12 12 9 6 4 2 2 2 0 0 4 5 13 17 12 10 6 4 2 2 2 0 0 3 9 12 20 18 13 10 6 4 2 2 2 0 0 2 12 15 23 25 18 14 10 6 4 2 2 2 0 0 1 15 19 26 30 26 19 14 10 6 4 2 2 2 0 Row 9 counts the following partitions (empty columns not shown): 333 432 54 63 72 711 81 9 441 522 621 6111 3111111 21111111 111111111 3222 531 51111 411111 3321 5211 222111 2211111 4221 22221 321111 4311 32211 33111 42111
References
- Richard P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University Press, 1999, p. 289.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Wikipedia, Durfee square.
Crossrefs
Programs
-
Mathematica
durf[ptn_]:=Length[Select[Range[Length[ptn]],ptn[[#]]>=#&]]; codurf[ptn_]:=Max[Length[ptn],Max[ptn]]; Table[Length[Select[IntegerPartitions[n],codurf[#]-durf[#]==k&]],{n,0,15},{k,0,n}]
-
PARI
row(n)={my(r=vector(n+1)); if(n==0, r[1]=1, forpart(p=n, my(c=1); while(c<#p && c
Comments