cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325200 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is k.

Original entry on oeis.org

1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 2, 0, 0, 3, 2, 0, 2, 0, 1, 0, 6, 2, 0, 2, 0, 0, 4, 3, 4, 2, 0, 2, 0, 0, 6, 2, 6, 4, 2, 0, 2, 0, 0, 4, 9, 5, 4, 4, 2, 0, 2, 0, 1, 0, 15, 6, 8, 4, 4, 2, 0, 2, 0, 0, 5, 12, 12, 9, 6, 4, 4, 2, 0, 2, 0, 0, 10, 6, 21, 10, 12, 6, 4, 4, 2, 0, 2, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Examples

			Triangle begins:
  1
  1  0
  0  2  0
  1  0  2  0
  0  3  0  2  0
  0  3  2  0  2  0
  1  0  6  2  0  2  0
  0  4  3  4  2  0  2  0
  0  6  2  6  4  2  0  2  0
  0  4  9  5  4  4  2  0  2  0
  1  0 15  6  8  4  4  2  0  2  0
  0  5 12 12  9  6  4  4  2  0  2  0
  0 10  6 21 10 12  6  4  4  2  0  2  0
  0 10 12 20 18 13 10  6  4  4  2  0  2  0
  0  5 27 20 23 16 16 10  6  4  4  2  0  2  0
  1  0 38 22 32 22 19 14 10  6  4  4  2  0  2  0
  0  6 34 38 34 35 20 22 14 10  6  4  4  2  0  2  0
  0 15 22 57 44 40 34 23 20 14 10  6  4  4  2  0  2  0
  0 20 20 71 55 54 45 32 26 20 14 10  6  4  4  2  0  2  0
  0 15 43 70 71 66 60 44 35 24 20 14 10  6  4  4  2  0  2  0
  0  6 74 64 99 83 70 65 42 38 24 20 14 10  6  4  4  2  0  2  0
Row n = 9 counts the following partitions (empty columns not shown):
  (432)   (333)    (54)      (63)      (72)       (81)        (9)
  (3321)  (441)    (621)     (6111)    (711)      (21111111)  (111111111)
  (4221)  (522)    (22221)   (222111)  (2211111)
  (4311)  (531)    (51111)   (411111)  (3111111)
          (3222)   (321111)
          (5211)
          (32211)
          (33111)
          (42111)
		

Crossrefs

Row sums are A000041. Column k = 1 is A325191. Column k = 2 is A325199.
T(n,k) = A325189(n,k) - A325188(n,k).

Programs

  • Mathematica
    otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==k&]],{n,0,20},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(b=#p,c=0); for(i=1, #p, my(x=#p-i+p[i]); b=min(b,x); c=max(c,x)); r[c-b+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n) - A368986(n). - Andrew Howroyd, Jan 13 2024