A325200 Regular triangle read by rows where T(n,k) is the number of integer partitions of n such that the difference between the length of the minimal triangular partition containing and the maximal triangular partition contained in the Young diagram is k.
1, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 2, 0, 0, 3, 2, 0, 2, 0, 1, 0, 6, 2, 0, 2, 0, 0, 4, 3, 4, 2, 0, 2, 0, 0, 6, 2, 6, 4, 2, 0, 2, 0, 0, 4, 9, 5, 4, 4, 2, 0, 2, 0, 1, 0, 15, 6, 8, 4, 4, 2, 0, 2, 0, 0, 5, 12, 12, 9, 6, 4, 4, 2, 0, 2, 0, 0, 10, 6, 21, 10, 12, 6, 4, 4, 2, 0, 2, 0
Offset: 0
Examples
Triangle begins: 1 1 0 0 2 0 1 0 2 0 0 3 0 2 0 0 3 2 0 2 0 1 0 6 2 0 2 0 0 4 3 4 2 0 2 0 0 6 2 6 4 2 0 2 0 0 4 9 5 4 4 2 0 2 0 1 0 15 6 8 4 4 2 0 2 0 0 5 12 12 9 6 4 4 2 0 2 0 0 10 6 21 10 12 6 4 4 2 0 2 0 0 10 12 20 18 13 10 6 4 4 2 0 2 0 0 5 27 20 23 16 16 10 6 4 4 2 0 2 0 1 0 38 22 32 22 19 14 10 6 4 4 2 0 2 0 0 6 34 38 34 35 20 22 14 10 6 4 4 2 0 2 0 0 15 22 57 44 40 34 23 20 14 10 6 4 4 2 0 2 0 0 20 20 71 55 54 45 32 26 20 14 10 6 4 4 2 0 2 0 0 15 43 70 71 66 60 44 35 24 20 14 10 6 4 4 2 0 2 0 0 6 74 64 99 83 70 65 42 38 24 20 14 10 6 4 4 2 0 2 0 Row n = 9 counts the following partitions (empty columns not shown): (432) (333) (54) (63) (72) (81) (9) (3321) (441) (621) (6111) (711) (21111111) (111111111) (4221) (522) (22221) (222111) (2211111) (4311) (531) (51111) (411111) (3111111) (3222) (321111) (5211) (32211) (33111) (42111)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- FindStat, St000380: Half the perimeter of the largest rectangle that fits inside the diagram of an integer partition
- FindStat, St000384: The maximal part of the shifted composition of an integer partition
- FindStat, St000783: The maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram
Crossrefs
Programs
-
Mathematica
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]]; Table[Length[Select[IntegerPartitions[n],otbmax[#]-otb[#]==k&]],{n,0,20},{k,0,n}]
-
PARI
row(n)={my(r=vector(n+1)); forpart(p=n, my(b=#p,c=0); for(i=1, #p, my(x=#p-i+p[i]); b=min(b,x); c=max(c,x)); r[c-b+1]++); r} \\ Andrew Howroyd, Jan 12 2024