cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325213 G.f.: A(x) = exp( Sum_{n>=1} (x^n/n) * (1 + x^n*A(x)^n) / (1 - x^n*A(x)^n)).

Original entry on oeis.org

1, 1, 3, 7, 22, 68, 230, 790, 2809, 10151, 37346, 139116, 524160, 1993184, 7641077, 29497043, 114568292, 447397474, 1755543081, 6918285937, 27369693199, 108659122477, 432762724820, 1728625913332, 6923326780630, 27797059897118, 111859099064653, 451086075723925, 1822628515630354, 7377839562543650
Offset: 0

Views

Author

Paul D. Hanna, Apr 16 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 22*x^4 + 68*x^5 + 230*x^6 + 790*x^7 + 2809*x^8 + 10151*x^9 + 37346*x^10 + 139116*x^11 + 524160*x^12 + ...
satisfies
log(A(x)) = x*(1+x*A(x))/(1-x*A(x)) + x^2/2*(1+x^2*A(x)^2)/(1-x^2*A(x)^2) + x^3/3*(1+x^3*A(x)^3)/(1-x^3*A(x)^3) + x^4/4*(1+x^4*A(x)^4)/(1-x^4*A(x)^4) + x^5/5*(1+x^5*A(x)^5)/(1-x^5*A(x)^5) + x^6/6*(1+x^6*A(x)^6)/(1-x^6*A(x)^6) + ...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 53*x^4/4 + 191*x^5/5 + 761*x^6/6 + 2969*x^7/7 + 11893*x^8/8 + 47677*x^9/9 + 192935*x^10/10 + 783575*x^11/11 + 3197657*x^12/12 + ...
		

Crossrefs

Cf. A210043.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=Vec( exp( sum(m=1, #A+1, x^m/m * (1 + x^m*Ser(A)^m)/(1 - x^m*Ser(A)^m) ) )) ); A[n+1]}
    for(n=0, 40, print1(a(n), ", "))