cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322232 E.g.f.: D(x,k) = 1 + k^2 * Integral S(x,k)*C(x,k)*D(x,k) dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

Original entry on oeis.org

1, 0, 1, 0, 4, 5, 0, 16, 148, 61, 0, 64, 2832, 6744, 1385, 0, 256, 47936, 383856, 410456, 50521, 0, 1024, 780544, 17142784, 54480944, 32947964, 2702765, 0, 4096, 12555264, 686711040, 5199585280, 8760740640, 3402510924, 199360981, 0, 16384, 201199616, 26090711040, 419867864320, 1569971730560, 1632067372896, 441239943664, 19391512145, 0, 65536, 3220652032, 965223559168, 30892394850304, 227204970315520, 502094919789184, 353538702361888, 70347660061552, 2404879675441
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2018

Keywords

Comments

Equals a row reversal of triangle A325221.
Compare to dn(x,k) = 1 - k^2 * Integral sn(x,k)*cn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions.
Compare also to Michael Pawellek's generalized elliptic functions.

Examples

			E.g.f.: D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
such that D(x,k)^2 - k^2*S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. D(x,k) begins:
1;
0, 1;
0, 4, 5;
0, 16, 148, 61;
0, 64, 2832, 6744, 1385;
0, 256, 47936, 383856, 410456, 50521;
0, 1024, 780544, 17142784, 54480944, 32947964, 2702765;
0, 4096, 12555264, 686711040, 5199585280, 8760740640, 3402510924, 199360981;
0, 16384, 201199616, 26090711040, 419867864320, 1569971730560, 1632067372896, 441239943664, 19391512145;
0, 65536, 3220652032, 965223559168, 30892394850304, 227204970315520, 502094919789184, 353538702361888, 70347660061552, 2404879675441; ...
RELATED SERIES.
The related series S(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
		

Crossrefs

Cf. A322230 (S), A322231 (C), A000364 (diagonal), A001818(row sums).
Cf. A325221 (row reversal).

Programs

  • PARI
    N=10;
    {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
    for(n=0,N, for(j=0,n, print1( (2*n)!*polcoeff(polcoeff(D,2*n,x),2*j,k),", ")) ;print(""))

Formula

E.g.f. D = D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n) * k^(2*j) / (2*n)!, along with related series S = S(x,k) and C = C(x,k), satisfies:
(1a) S = Integral C*D^2 dx.
(1b) C = 1 + Integral S*D^2 dx.
(1c) D = 1 + k^2 * Integral S*C*D dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral D^2 dx ).
(3b) D + k*S = exp( k * Integral C*D dx ).
(4a) S = sinh( Integral D^2 dx ).
(4b) S = sinh( k * Integral C*D dx ) / k.
(4c) C = cosh( Integral D^2 dx ).
(4d) D = cosh( k * Integral C*D dx ).
(5a) d/dx S = C*D^2.
(5b) d/dx C = S*D^2.
(5c) d/dx D = k^2 * S*C*D.
From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral D dx, k),
(6b) C = cn( i * Integral D dx, k),
(6c) D = dn( i * Integral D dx, k).
(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Main diagonal equals A000364, the secant numbers.

A325220 E.g.f.: S(x,k) = -i * sn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1, 209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1, 29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322230.
Appears to equal EG1 triangle A162005, which has other formulas.
Compare to sn(x,k) = Integral cn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060628).

Examples

			E.g.f.: S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
such that S(x,k) = cn( i * Integral C(x,k) dx, k) and C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
2, 1;
16, 28, 1;
272, 1032, 270, 1;
7936, 52736, 36096, 2456, 1;
353792, 3646208, 4766048, 1035088, 22138, 1;
22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1;
1903757312, 38188155904, 120536980224, 93989648000, 18598875760, 702812568, 1793606, 1;
209865342976, 5488365862912, 24060789342208, 28745874079744, 10324483102720, 1002968825344, 17753262208, 16142512, 1;
29088885112832, 961530104709120, 5590122715250688, 9498855414644736, 5416305638467584, 1013356176688128, 51882638754240, 445736371872, 145282674, 1; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
		

Crossrefs

Cf. A325221 (C), A325222 (D).
Cf. A322230 (row reversal), A162005.

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n+1)!*polcoeff(polcoeff(S, 2*n+1, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. S = S(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n+1)*k^(2*j)/(2*n+1)!, along with related series C = C(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal (2*n+1)!*(2*n)!/(n!^2*4^n) = A079484(n), the product of two consecutive odd double factorials.
Column T(n,0) = A000182(n), where A000182 is the tangent numbers.

A325222 E.g.f.: D(x,k) = dn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.

Original entry on oeis.org

1, 0, 1, 0, 8, 1, 0, 136, 88, 1, 0, 3968, 6240, 816, 1, 0, 176896, 513536, 195216, 7376, 1, 0, 11184128, 51880064, 39572864, 5352544, 66424, 1, 0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1, 0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1, 0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 13 2019

Keywords

Comments

Equals a row reversal of triangle A322231.
Compare to dn(x,k) = 1 - k^2 * Integral sn(x,k)*cn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions.

Examples

			E.g.f.: D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
such that D(x,k) = dn( i * Integral C(x,k) dx, k) where C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. D(x,k) begins:
1;
0, 1;
0, 8, 1;
0, 136, 88, 1;
0, 3968, 6240, 816, 1;
0, 176896, 513536, 195216, 7376, 1;
0, 11184128, 51880064, 39572864, 5352544, 66424, 1;
0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1;
0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1;
0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1; ...
RELATED SERIES.
The related series S(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
		

Crossrefs

Cf. A325220 (S), A325221(C).
Cf. A322231 (row reversal).

Programs

  • PARI
    N=10;
    {S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
    {T(n,j) = (2*n)!*polcoeff(polcoeff(D, 2*n, x), 2*j, k)}
    for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))

Formula

E.g.f. D = D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, along with related series S = S(x,k) and C = C(x,k), satisfies:
(1a) S = Integral C^2*D dx.
(1b) C = 1 + Integral S*C*D dx.
(1c) D = 1 + k^2 * Integral S*C^2 dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral C*D dx ).
(3b) D + k*S = exp( k * Integral C^2 dx ).
(4a) S = sinh( Integral C*D dx ).
(4b) S = sinh( k * Integral C^2 dx ) / k.
(4c) C = cosh( Integral C*D dx ).
(4d) D = cosh( k * Integral C^2 dx ).
(5a) d/dx S = C^2*D.
(5b) d/dx C = S*C*D.
(5c) d/dx D = k^2 * S*C^2.
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral C dx, k),
(6b) C = cn( i * Integral C dx, k),
(6c) D = dn( i * Integral C dx, k).
(7a) S = sc( Integral C dx, k') = sn(Integral C dx, k')/cn(Integral C dx, k'),
(7b) C = nc( Integral C dx, k') = 1/cn(Integral C dx, k'),
(7c) D = dc( Integral C dx, k') = dn(Integral C dx, k')/cn(Integral C dx, k').
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Column T(n,n+1) = 2^n*A002105(n+1), for n>=0, where A002105 gives the reduced tangent numbers.
Showing 1-3 of 3 results.