A325231 Numbers of the form 2 * p or 3 * 2^k, p prime, k > 1.
6, 10, 12, 14, 22, 24, 26, 34, 38, 46, 48, 58, 62, 74, 82, 86, 94, 96, 106, 118, 122, 134, 142, 146, 158, 166, 178, 192, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 384, 386, 394, 398, 422, 446, 454, 458, 466
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 6: {1,2} 10: {1,3} 12: {1,1,2} 14: {1,4} 22: {1,5} 24: {1,1,1,2} 26: {1,6} 34: {1,7} 38: {1,8} 46: {1,9} 48: {1,1,1,1,2} 58: {1,10} 62: {1,11} 74: {1,12} 82: {1,13} 86: {1,14} 94: {1,15} 96: {1,1,1,1,1,2} 106: {1,16} 118: {1,17}
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Total[primeMS[#]]-Max[Length[primeMS[#]],Max[primeMS[#]]]==1&]
-
Python
from sympy import isprime A325231_list = [n for n in range(6,10**6) if ((not n % 2) and isprime(n//2)) or (bin(n)[2:4] == '11' and bin(n).count('1') == 2)] # Chai Wah Wu, Apr 16 2019
Comments