A325232 Number of integer partitions (of any nonnegative integer) whose sum minus the lesser of their maximum part and their number of parts is n.
2, 3, 6, 10, 18, 27, 44, 64, 97, 138, 200, 276, 390, 528, 724, 968, 1301, 1712, 2266, 2946, 3842, 4947, 6372, 8122, 10362, 13094, 16544, 20754, 26010, 32392, 40308, 49876, 61648, 75845, 93178, 114006, 139308, 169586, 206158, 249814, 302267, 364664, 439330
Offset: 0
Keywords
Examples
The a(0) = 1 through a(4) = 18 partitions: () (2) (3) (4) (5) (1) (11) (22) (32) (33) (21) (31) (41) (42) (111) (221) (51) (211) (321) (222) (311) (411) (322) (1111) (331) (2111) (421) (3111) (511) (4111) (2211) (3211) (4211) (5111) (11111) (21111) (31111) (41111) (51111)
Links
- Giovanni Resta, Table of n, a(n) for n = 0..75
- FindStat, St000533: The maximal number of non-attacking rooks on a Ferrers shape
Crossrefs
Programs
-
Mathematica
nn=30; mindif[ptn_]:=If[ptn=={},0,Total[ptn]-Min[Length[ptn],Max[ptn]]]; allip=Array[IntegerPartitions,2*nn+2,0,Join]; Table[Length[Select[allip,mindif[#]==n&]],{n,0,nn}]
Formula
For n > 0, a(n) = Sum_{k > 0} A325227(n + k, k).
Extensions
More terms from Giovanni Resta, Apr 15 2019