A325236 Squarefree k such that phi(k)/k - 1/2 is positive and minimal for k with gpf(k) = prime(n).
1, 2, 3, 15, 21, 231, 273, 255, 285, 167739, 56751695, 7599867, 3829070245, 567641679, 510795753, 39169969059, 704463969, 3717740976339, 42917990271, 547701649495, 45484457928390429, 59701280265935165
Offset: 0
Keywords
Examples
First terms of this sequence appear in the chart below between asterisks. The values of n appear in the header, values of k followed parenthetically by phi(k)/k appear in column n. The x axis plots k according to primepi(gpf(k)), while the y axis plots k according to phi(k)/k: 0 1 2 3 4 . . . . . -- *1* ----------------------------------------------- (1/1) . . . . . . . . . . . . . . . . . . 7 . . . 5 (6/7) . . . (4/5) . . . . . . . . . . 35 . . *3* . (24/35) . . (2/3) . . . . . . . . . . . . . . . . *21* . . . . (4/7) . . . *15* . . . . (8/15) . . *2* . . . ----------(1/2)--------------------------------------- . . . . . . . . . 105 . . . . (16/35) . . . . 14 . . . 10 (3/7) . . . (2/5) . . . . . . . . . . 70 . . 6 . (12/35) . . (1/3) . . . . . . 42 . . . 30 (2/7) . . . (4/15) . . . . . 210 . . . . (8/35) ... a(3) = 15 for the following reasons. There are 4 possible values of k with n = 3. These are 5, 15, 10, and 30 with phi(k)/k = 4/5, 8/15, 2/5, and 4/15, respectively. Subtracting 1/2 from each of the latter values, we derive 3/10, 1/30, -1/10, and -7/30 respectively. Since the smallest of these differences is 3/10 pertaining to k = 15, a(3) = 15.
Links
- Michael De Vlieger, Plot of A325236(n) among terms in row n of A307540.
Crossrefs
Programs
-
Mathematica
With[{e = 15}, Map[MinimalBy[#, If[# < 0, # + 1, #] &[#[[2]] - 1/2] &] &, SplitBy[#, Last]] &@ Array[{#2, EulerPhi[#2]/#2, If[! IntegerQ@ #, 0, #] &[1 + Floor@ Log2@ #1]} & @@ {#, Times @@ MapIndexed[Prime[First@ #2]^#1 &, Reverse@ IntegerDigits[#, 2]]} &, 2^(e + 1), 0]][[All, 1, 1]]
Comments