cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325239 Irregular triangle read by rows where row 1 is {1} and row n > 1 is the sequence starting with n and repeatedly applying A181819 until 2 is reached.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 5, 2, 6, 4, 3, 2, 7, 2, 8, 5, 2, 9, 3, 2, 10, 4, 3, 2, 11, 2, 12, 6, 4, 3, 2, 13, 2, 14, 4, 3, 2, 15, 4, 3, 2, 16, 7, 2, 17, 2, 18, 6, 4, 3, 2, 19, 2, 20, 6, 4, 3, 2, 21, 4, 3, 2, 22, 4, 3, 2, 23, 2, 24, 10, 4, 3, 2, 25, 3, 2, 26, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps n = p^i*...*q^j to prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n.

Examples

			Triangle begins:
   1              26 4 3 2        51 4 3 2          76 6 4 3 2
   2              27 5 2          52 6 4 3 2        77 4 3 2
   3 2            28 6 4 3 2      53 2              78 8 5 2
   4 3 2          29 2            54 10 4 3 2       79 2
   5 2            30 8 5 2        55 4 3 2          80 14 4 3 2
   6 4 3 2        31 2            56 10 4 3 2       81 7 2
   7 2            32 11 2         57 4 3 2          82 4 3 2
   8 5 2          33 4 3 2        58 4 3 2          83 2
   9 3 2          34 4 3 2        59 2              84 12 6 4 3 2
  10 4 3 2        35 4 3 2        60 12 6 4 3 2     85 4 3 2
  11 2            36 9 3 2        61 2              86 4 3 2
  12 6 4 3 2      37 2            62 4 3 2          87 4 3 2
  13 2            38 4 3 2        63 6 4 3 2        88 10 4 3 2
  14 4 3 2        39 4 3 2        64 13 2           89 2
  15 4 3 2        40 10 4 3 2     65 4 3 2          90 12 6 4 3 2
  16 7 2          41 2            66 8 5 2          91 4 3 2
  17 2            42 8 5 2        67 2              92 6 4 3 2
  18 6 4 3 2      43 2            68 6 4 3 2        93 4 3 2
  19 2            44 6 4 3 2      69 4 3 2          94 4 3 2
  20 6 4 3 2      45 6 4 3 2      70 8 5 2          95 4 3 2
  21 4 3 2        46 4 3 2        71 2              96 22 4 3 2
  22 4 3 2        47 2            72 15 4 3 2       97 2
  23 2            48 14 4 3 2     73 2              98 6 4 3 2
  24 10 4 3 2     49 3 2          74 4 3 2          99 6 4 3 2
  25 3 2          50 6 4 3 2      75 6 4 3 2       100 9 3 2
		

Crossrefs

Row lengths are A182850(n) + 1.
See A353510 for a full square array version of this table.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>2&],{n,30}]

Formula

A001222(T(n,k)) = A323023(n,k), n > 2, k <= A182850(n).