A325240 Numbers whose minimum prime exponent is 2.
4, 9, 25, 36, 49, 72, 100, 108, 121, 144, 169, 196, 200, 225, 288, 289, 324, 361, 392, 400, 441, 484, 500, 529, 576, 675, 676, 784, 800, 841, 900, 961, 968, 972, 1089, 1125, 1152, 1156, 1225, 1323, 1352, 1369, 1372, 1444, 1521, 1568, 1600, 1681, 1764, 1800
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 4: {1,1} 9: {2,2} 25: {3,3} 36: {1,1,2,2} 49: {4,4} 72: {1,1,1,2,2} 100: {1,1,3,3} 108: {1,1,2,2,2} 121: {5,5} 144: {1,1,1,1,2,2} 169: {6,6} 196: {1,1,4,4} 200: {1,1,1,3,3} 225: {2,2,3,3} 288: {1,1,1,1,1,2,2} 289: {7,7} 324: {1,1,2,2,2,2} 361: {8,8} 392: {1,1,1,4,4} 400: {1,1,1,1,3,3}
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[1000],Min@@FactorInteger[#][[All,2]]==2&]
-
PARI
is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) == 2; } \\ Amiram Eldar, Jan 30 2023
-
Python
from math import isqrt, gcd from sympy import integer_nthroot, factorint, mobius def A325240(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c, l = n+x, 0 j = isqrt(x) while j>1: k2 = integer_nthroot(x//j**2,3)[0]+1 w = squarefreepi(k2-1) c -= j*(w-l) l, j = w, isqrt(x//k2**3) c -= squarefreepi(integer_nthroot(x,3)[0])-l for w in range(1,integer_nthroot(x,5)[0]+1): if all(d<=1 for d in factorint(w).values()): for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1): if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()): c += integer_nthroot(z//y**4,3)[0] return c return bisection(f,n,n**2) # Chai Wah Wu, Oct 02 2024
Formula
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Product_{p prime} (1 + 1/(p^2*(p-1))) = A082695 - A065483 = 0.6038122832... . - Amiram Eldar, Jan 30 2023
Comments