A325241 Numbers > 1 whose maximum prime exponent is one greater than their minimum.
12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 12: {1,1,2} 18: {1,2,2} 20: {1,1,3} 28: {1,1,4} 44: {1,1,5} 45: {2,2,3} 50: {1,3,3} 52: {1,1,6} 60: {1,1,2,3} 63: {2,2,4} 68: {1,1,7} 72: {1,1,1,2,2} 75: {2,3,3} 76: {1,1,8} 84: {1,1,2,4} 90: {1,2,2,3} 92: {1,1,9} 98: {1,4,4} 99: {2,2,5}
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&] Select[Range[300], Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* Amiram Eldar, Jan 30 2023 *)
-
PARI
is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ Amiram Eldar, Jan 30 2023
-
Python
from sympy import factorint def ok(n): e = sorted(factorint(n).values()) return n > 1 and max(e) == 1 + min(e) print([k for k in range(280) if ok(k)]) # Michael S. Branicky, Dec 18 2021
Comments