cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325241 Numbers > 1 whose maximum prime exponent is one greater than their minimum.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 180, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 252, 260, 261, 268, 275, 276, 279
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose maximum multiplicity is one greater than their minimum (counted by A325279).
The asymptotic density of this sequence is 1/zeta(3) - 1/zeta(2) = A088453 - A059956 = 0.22398... . - Amiram Eldar, Jan 30 2023

Examples

			The sequence of terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  28: {1,1,4}
  44: {1,1,5}
  45: {2,2,3}
  50: {1,3,3}
  52: {1,1,6}
  60: {1,1,2,3}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  84: {1,1,2,4}
  90: {1,2,2,3}
  92: {1,1,9}
  98: {1,4,4}
  99: {2,2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Max@@FactorInteger[#][[All,2]]-Min@@FactorInteger[#][[All,2]]==1&]
    Select[Range[300],  Min[e = FactorInteger[#][[;; , 2]]] +1 == Max[e] &] (* Amiram Eldar, Jan 30 2023 *)
  • PARI
    is(n)={my(e=factor(n)[,2]); n>1 && vecmin(e) + 1 == vecmax(e); } \\ Amiram Eldar, Jan 30 2023
  • Python
    from sympy import factorint
    def ok(n):
        e = sorted(factorint(n).values())
        return n > 1 and max(e) == 1 + min(e)
    print([k for k in range(280) if ok(k)]) # Michael S. Branicky, Dec 18 2021
    

Formula

A051903(a(n)) - A051904(a(n)) = 1.