A325253 Number of integer partitions of n with adjusted frequency depth ceiling(sqrt(n)).
1, 1, 1, 1, 2, 2, 4, 4, 6, 8, 17, 26, 25, 44, 53, 63, 83, 128, 168, 212, 273, 344, 429, 525, 662, 796, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 0, 0, 0, 0, 0, 1, 5, 14, 36, 76, 143, 269, 446, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
The a(2) = 1 through a(11) = 26 partitions: 11 111 22 32 42 43 53 54 433 443 1111 41 51 52 62 63 442 533 321 61 71 72 622 551 2211 421 431 81 811 722 521 432 3331 911 3311 531 4222 3332 621 7111 5222 222111 61111 8111 222211 32222 322111 33311 331111 44111 511111 71111 2221111 222221 4111111 322211 22111111 332111 31111111 422111 211111111 611111 2222111 3221111 3311111 5111111 22211111 41111111 221111111 311111111 2111111111
Crossrefs
Programs
-
Mathematica
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]]; Table[Length[Select[IntegerPartitions[n],fdadj[#]==Ceiling[Sqrt[n]]&]],{n,0,30}]
Comments