A325260 Number of integer partitions of n whose omega-sequence covers an initial interval of positive integers.
1, 1, 2, 2, 4, 5, 5, 8, 10, 12, 13, 18, 19, 24, 25, 31, 33, 40, 40, 49, 51, 59, 60, 71, 72, 83, 84, 96, 98, 111, 111, 126, 128, 142, 143, 160, 161, 178, 179, 197, 199, 218, 218, 239, 241, 261, 262, 285, 286, 309, 310, 334, 336, 361, 361, 388, 390, 416, 417, 446
Offset: 0
Keywords
Examples
The a(1) = 1 through a(9) = 12 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (9) (11) (21) (22) (32) (33) (43) (44) (54) (31) (41) (42) (52) (53) (63) (211) (221) (51) (61) (62) (72) (311) (411) (322) (71) (81) (331) (332) (441) (511) (422) (522) (3211) (611) (711) (3221) (3321) (4211) (4221) (4311) (5211)
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]; Table[Length[Select[IntegerPartitions[n],normQ[omseq[#]]&]],{n,0,30}]
Formula
Conjectures from Chai Wah Wu, Jan 13 2021: (Start)
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n > 9.
G.f.: (-x^9 - x^8 - x^7 + x^6 - x^5 - x^2 - x - 1)/((x - 1)^3*(x + 1)^2*(x^2 + 1)*(x^2 + x + 1)). (End)
Comments