A325283 Heinz numbers of integer partitions with maximum adjusted frequency depth for partitions of that sum.
2, 4, 6, 12, 18, 20, 24, 28, 40, 48, 60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280
Offset: 1
Examples
The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins: 2: {1} (1) 4: {1,1} (2,1) 6: {1,2} (2,2,1) 12: {1,1,2} (3,2,2,1) 18: {1,2,2} (3,2,2,1) 20: {1,1,3} (3,2,2,1) 24: {1,1,1,2} (4,2,2,1) 28: {1,1,4} (3,2,2,1) 40: {1,1,1,3} (4,2,2,1) 48: {1,1,1,1,2} (5,2,2,1) 60: {1,1,2,3} (4,3,2,2,1) 84: {1,1,2,4} (4,3,2,2,1) 90: {1,2,2,3} (4,3,2,2,1) 120: {1,1,1,2,3} (5,3,2,2,1) 126: {1,2,2,4} (4,3,2,2,1) 132: {1,1,2,5} (4,3,2,2,1) 140: {1,1,3,4} (4,3,2,2,1) 150: {1,2,3,3} (4,3,2,2,1) 156: {1,1,2,6} (4,3,2,2,1) 168: {1,1,1,2,4} (5,3,2,2,1) 180: {1,1,2,2,3} (5,3,2,2,1)
Crossrefs
Programs
-
Mathematica
nn=30; primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]]; mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}]; Select[Range[Prime[nn]],fdadj[primeMS[#]]==mfds[[Total[primeMS[#]]]]&]
Comments