A225486 Maximal frequency depth for the partitions of n.
0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1
Keywords
Examples
(See A225485.)
Crossrefs
Programs
-
Mathematica
c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &] f[s_] := f[s] = Drop[FixedPointList[c, s], -2] t[s_] := t[s] = Length[f[s]] u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]], {k, 1, Length[IntegerPartitions[n]]}]; Prepend[Table[Max[u[n]], {n, 2, 10}], 0] (* second program *) grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}]; Join@@MapIndexed[ConstantArray[#2[[1]]-1,#1]&,Length[#]-Last[#]&/@NestList[grw,{1,1},6]] (* Gus Wiseman, Apr 19 2019 *)
Formula
a(n) = number of terms in row n of the array in A225485, for n > 0.
Extensions
More terms from Gus Wiseman, Apr 19 2019
Comments