cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A325280 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 3, 0, 0, 1, 3, 4, 3, 0, 0, 0, 1, 1, 4, 8, 1, 0, 0, 0, 1, 3, 6, 9, 3, 0, 0, 0, 0, 1, 2, 8, 12, 7, 0, 0, 0, 0, 0, 1, 3, 11, 17, 10, 0, 0, 0, 0, 0, 0, 1, 1, 11, 26, 17, 0, 0, 0, 0, 0, 0, 0, 1, 5, 19, 25, 27
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (this sequence).

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  2  1  1
  0  1  1  2  3  0
  0  1  3  4  3  0  0
  0  1  1  4  8  1  0  0
  0  1  3  6  9  3  0  0  0
  0  1  2  8 12  7  0  0  0  0
  0  1  3 11 17 10  0  0  0  0  0
  0  1  1 11 26 17  0  0  0  0  0  0
  0  1  5 19 25 27  0  0  0  0  0  0  0
  0  1  1 17 44 38  0  0  0  0  0  0  0  0
  0  1  3 25 53 52  1  0  0  0  0  0  0  0  0
  0  1  3 29 63 76  4  0  0  0  0  0  0  0  0  0
  0  1  4 37 83 98  8  0  0  0  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)  (333)        (54)      (441)       (3321)
       (111111111)  (63)      (522)       (4221)
                    (72)      (711)       (4311)
                    (81)      (3222)      (5211)
                    (432)     (6111)      (32211)
                    (531)     (22221)     (42111)
                    (621)     (33111)     (321111)
                    (222111)  (51111)
                              (411111)
                              (2211111)
                              (3111111)
                              (21111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A032741. Column k = 3 is A325245.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or this sequence (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==k&]],{n,0,16},{k,0,n}]
  • PARI
    \\ depth(p) gives adjusted frequency depth of partition.
    depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1+depth(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A225485 Number of partitions of n that have frequency depth k, an array read by rows.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 4, 3, 1, 1, 4, 8, 1, 1, 3, 6, 9, 3, 1, 2, 8, 12, 7, 1, 3, 11, 17, 10, 1, 1, 11, 26, 17, 1, 5, 19, 25, 27, 1, 1, 17, 44, 38, 1, 3, 25, 53, 52, 1, 1, 3, 29, 63, 76, 4
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

Let S = {x(1),...,x(k)} be a multiset whose distinct elements are y(1),...,y(h). Let f(i) be the frequency of y(i) in S. Define F(S) = {f(1),..,f(h)}, F(1,S) = F(S), and F(m,S) = F(F(m-1),S) for m>1. Then lim(F(m,S)) = {1} for every S, so that there is a least positive integer i for which F(i,S) = {1}, which we call the frequency depth of S.
Equivalently, the frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). - Gus Wiseman, Apr 19 2019
From Clark Kimberling, Sep 26 2023: (Start)
Below, m^n abbreviates the sum m+...+m of n terms. In the following list, the numbers p_1,...,p_k are distinct, m >= 1, and k >= 1. The forms of the partitions being counted are as follows:
column 1: [n],
column 2: [m^k],
column 3: [p_1^m,...,p_k^m],
column 4: [(p_1^m_1)^m,..., (p_k^m_k)^m], distinct numbers m_i.
Column 3 is of special interest. Assume first that m = 1, so that the form of partition being counted is p = [p_1,...,p_k], with conjugate given by [q_1,...,q_m] where q_i is the number of parts of p that are >= i. Since the p_i are distinct, the distinct parts of q are the integers 1,2,...,k. For the general case that m >= 1, the distinct parts of q are the integers m,...,km. Let S(n) denote the set of partitions of n counted by column 3. Then if a and b are in the set S*(n) of conjugates of partitions in S(n), and if a > b, then a - b is also in S*(n). Call this the subtraction property. Conversely, if a partition q has the subtraction property, then q must consist of a set of numbers m,..,km for some m. Thus, column 3 counts the partitions of n that have the subtraction property. (End)

Examples

			The first 9 rows:
  n = 1 .... 0
  n = 2 .... 1..1
  n = 3 .... 1..1..1
  n = 4 .... 1..2..1..1
  n = 5 .... 1..1..2..3
  n = 6 .... 1..3..4..3
  n = 7 .... 1..1..4..8..1
  n = 8 .... 1..3..6..9..3
  n = 9 .... 1..2..8.12..7
For the 7 partitions of 5, successive frequencies are shown here:
  5 -> 1 (depth 1)
  41 -> 11 -> 2 -> 1 (depth 3)
  32 -> 11 -> 2 -> 1 (depth 3)
  311 -> 12 -> 11 -> 2 -> 1 (depth 4)
  221 -> 12 -> 11 -> 2 -> 1 (depth 4)
  2111 -> 13 -> 11 -> 2 -> 1 (depth 4)
  11111 -> 5 -> 1 (depth 2)
Summary: 1 partition has depth 1; 1 has depth 2; 2 have 3; and 3 have 4, so that the row for n = 5 is 1..1..2..3 .
		

Crossrefs

Row sums are A000041.
Column k = 2 is A032741.
Column k = 3 is A325245.
a(n!) = A325272(n).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], i]],
      {i, 1, Length[IntegerPartitions[n]]}];
    Flatten[Table[Count[u[n], k], {n, 2, 25}, {k, 1, Max[u[n]]}]]

A225486 Maximal frequency depth for the partitions of n.

Original entry on oeis.org

0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

See A225485 for the definition of frequency depth.
The frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). Differs from A325282 at a(0) and a(1). - Gus Wiseman, Apr 19 2019

Examples

			(See A225485.)
		

Crossrefs

Run lengths are A325258, i.e., first differences of Levine's sequence A011784.

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]],
        {k, 1, Length[IntegerPartitions[n]]}];
    Prepend[Table[Max[u[n]], {n, 2, 10}], 0]
    (* second program *)
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    Join@@MapIndexed[ConstantArray[#2[[1]]-1,#1]&,Length[#]-Last[#]&/@NestList[grw,{1,1},6]] (* Gus Wiseman, Apr 19 2019 *)

Formula

a(n) = number of terms in row n of the array in A225485, for n > 0.

Extensions

More terms from Gus Wiseman, Apr 19 2019

A325702 Number of integer partitions of n containing their multiset of multiplicities (as a submultiset).

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 2, 1, 3, 3, 8, 7, 10, 13, 17, 19, 28, 35, 38, 51, 67, 81, 100, 128, 157, 195, 233, 285, 348, 427, 506, 613, 733, 873, 1063, 1263, 1503, 1802, 2131, 2537, 3005, 3565, 4171, 4922, 5820, 6775, 8001, 9333, 10860, 12739, 14840, 17206, 20029, 23248
Offset: 0

Views

Author

Gus Wiseman, May 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325755.

Examples

			The partition x = (4,3,1,1,1) has multiplicities (3,1,1), which are a submultiset of x, so x is counted under a(10).
The a(1) = 1 through a(11) = 7 partitions:
  (1)  (22)   (221)  (2211)  (3211)  (4211)   (333)    (3322)    (7211)
       (211)         (3111)          (32111)  (5211)   (3331)    (33221)
                                     (41111)  (32211)  (6211)    (52211)
                                                       (42211)   (53111)
                                                       (43111)   (322211)
                                                       (322111)  (332111)
                                                       (421111)  (431111)
                                                       (511111)
		

Crossrefs

Programs

  • Mathematica
    submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap]
    Table[Length[Select[IntegerPartitions[n],submultQ[Sort[Length/@Split[#]],#]&]],{n,0,30}]

A325282 Maximum adjusted frequency depth among integer partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (A325280).
Run lengths are A325258, i.e., first differences of Levine's sequence A011784 (except at n = 1).

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Max@@fdadj/@IntegerPartitions[n],{n,0,30}]

Formula

a(0) = 0; a(1) = 1; a(n > 1) = A225486(n).

A325245 Number of integer partitions of n with adjusted frequency depth 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 11, 19, 17, 25, 29, 37, 37, 56, 53, 75, 80, 99, 103, 145, 143, 181, 199, 247, 255, 336, 339, 426, 459, 548, 590, 738, 759, 916, 999, 1192, 1259, 1529, 1609, 1915, 2083, 2406, 2589, 3085, 3267, 3809, 4134, 4763, 5119, 5964
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)      (64)
              (41)  (51)    (52)   (62)    (63)      (73)
                    (321)   (61)   (71)    (72)      (82)
                    (2211)  (421)  (431)   (81)      (91)
                                   (521)   (432)     (532)
                                   (3311)  (531)     (541)
                                           (621)     (631)
                                           (222111)  (721)
                                                     (3322)
                                                     (4321)
                                                     (4411)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==3&]],{n,0,30}]

A325258 a(1) = 1; otherwise, first differences of Levine's sequence A011784.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 28, 171, 2624, 172613, 139584150, 6837485347187, 266437138079023501057, 508009471379222384299345337895696, 37745517525533091954228691786161750063795478326636142, 5347426383812697233786139576220412396732847744407175515852823296919414647252347610750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

a(n) is the number of nonnegative integers k such that the maximum adjusted frequency depth among integer partitions of k is n. For example, the a(5) = 7 numbers are 7, 8, 9, 10, 11, 12, and 13.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n). The maximum adjusted frequency depth for partitions of n is A325282(n).

Crossrefs

Programs

  • Mathematica
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    ReplacePart[Differences[Last/@NestList[grw,{1,1},9]],2->1]

A325246 Number of integer partitions of n with adjusted frequency depth equal to their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 4, 6, 8, 14, 15, 21, 26, 34, 42, 51, 60, 74, 86, 102, 117, 137, 155, 178, 202, 228, 255, 286, 317, 355, 390, 430, 472, 519, 566, 617, 670, 728, 787, 852, 916, 988, 1060, 1137, 1218, 1303, 1389, 1482, 1577, 1679, 1781, 1890, 2001, 2120
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325266.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(1) = 1 through a(10) = 14 partitions (A = 10):
  (1)  (2)   (3)  (4)   (5)     (6)     (7)     (8)      (9)      (A)
       (11)       (22)  (2111)  (33)    (421)   (44)     (432)    (55)
                                (321)   (2221)  (431)    (531)    (532)
                                (3111)  (4111)  (521)    (621)    (541)
                                                (5111)   (3222)   (631)
                                                (32111)  (6111)   (721)
                                                         (32211)  (3331)
                                                         (42111)  (4222)
                                                                  (7111)
                                                                  (32221)
                                                                  (33211)
                                                                  (42211)
                                                                  (43111)
                                                                  (52111)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Length[#]&]],{n,0,30}]

A325283 Heinz numbers of integer partitions with maximum adjusted frequency depth for partitions of that sum.

Original entry on oeis.org

2, 4, 6, 12, 18, 20, 24, 28, 40, 48, 60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325254.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
  2:   {1}         (1)
  4:   {1,1}       (2,1)
  6:   {1,2}       (2,2,1)
  12:  {1,1,2}     (3,2,2,1)
  18:  {1,2,2}     (3,2,2,1)
  20:  {1,1,3}     (3,2,2,1)
  24:  {1,1,1,2}   (4,2,2,1)
  28:  {1,1,4}     (3,2,2,1)
  40:  {1,1,1,3}   (4,2,2,1)
  48:  {1,1,1,1,2} (5,2,2,1)
  60:  {1,1,2,3}   (4,3,2,2,1)
  84:  {1,1,2,4}   (4,3,2,2,1)
  90:  {1,2,2,3}   (4,3,2,2,1)
  120: {1,1,1,2,3} (5,3,2,2,1)
  126: {1,2,2,4}   (4,3,2,2,1)
  132: {1,1,2,5}   (4,3,2,2,1)
  140: {1,1,3,4}   (4,3,2,2,1)
  150: {1,2,3,3}   (4,3,2,2,1)
  156: {1,1,2,6}   (4,3,2,2,1)
  168: {1,1,1,2,4} (5,3,2,2,1)
  180: {1,1,2,2,3} (5,3,2,2,1)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Select[Range[Prime[nn]],fdadj[primeMS[#]]==mfds[[Total[primeMS[#]]]]&]

A325256 Number of normal multisets of size n whose adjusted frequency depth is the maximum for multisets of that size.

Original entry on oeis.org

1, 1, 1, 2, 3, 10, 12, 12, 44, 128, 228, 422, 968, 1750, 420, 2100
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

A multiset is normal if its union is an initial interval of positive integers.
The adjusted frequency depth of a multiset is 0 if the multiset is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the multiset {1,1,2,2,3} has adjusted frequency depth 5 because we have {1,1,2,2,3} -> {1,2,2} -> {1,2} -> {1,1} -> {2}. The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n).

Examples

			The a(1) = 1 through a(7) = 12 multisets:
  {1}  {12}  {112}  {1123}  {11123}  {111123}  {1112234}
             {122}  {1223}  {11223}  {111234}  {1112334}
                    {1233}  {11233}  {112345}  {1112344}
                            {11234}  {122223}  {1122234}
                            {12223}  {122234}  {1123334}
                            {12233}  {122345}  {1123444}
                            {12234}  {123333}  {1222334}
                            {12333}  {123334}  {1222344}
                            {12334}  {123345}  {1223334}
                            {12344}  {123444}  {1223444}
                                     {123445}  {1233344}
                                     {123455}  {1233444}
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    mfdm=Table[Max@@fdadj/@allnorm[n],{n,0,nn}];
    Table[Length[Select[allnorm[n],fdadj[#]==mfdm[[n+1]]&]],{n,0,nn}]
Showing 1-10 of 10 results.