cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A225486 Maximal frequency depth for the partitions of n.

Original entry on oeis.org

0, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

See A225485 for the definition of frequency depth.
The frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). Differs from A325282 at a(0) and a(1). - Gus Wiseman, Apr 19 2019

Examples

			(See A225485.)
		

Crossrefs

Run lengths are A325258, i.e., first differences of Levine's sequence A011784.

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], k]],
        {k, 1, Length[IntegerPartitions[n]]}];
    Prepend[Table[Max[u[n]], {n, 2, 10}], 0]
    (* second program *)
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    Join@@MapIndexed[ConstantArray[#2[[1]]-1,#1]&,Length[#]-Last[#]&/@NestList[grw,{1,1},6]] (* Gus Wiseman, Apr 19 2019 *)

Formula

a(n) = number of terms in row n of the array in A225485, for n > 0.

Extensions

More terms from Gus Wiseman, Apr 19 2019

A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, -1, -2, -3, 3, 1, 1, 2, 4, 7, 4, 1, 0, -1, -3, -7, -14, 5, 1, 0, 0, 1, 4, 11, 25, 6, 1, 0, 0, 0, -1, -5, -16, -41, 8, 2, 1, 1, 1, 1, 2, 7, 23, 64, 10, 2, 0, -1, -2, -3, -4, -6, -13, -36, -100, 12, 2, 0, 0, 1, 3, 6, 10, 16, 29, 65, 165
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2024

Keywords

Examples

			As a table (read by antidiagonals downward):
        n=0:  n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:
  ----------------------------------------------------------
  k=0:   1     1     1     2     2     3     4     5     6
  k=1:   0     0     1     0     1     1     1     1     2
  k=2:   0     1    -1     1     0     0     0     1     0
  k=3:   1    -2     2    -1     0     0     1    -1     0
  k=4:  -3     4    -3     1     0     1    -2     1     1
  k=5:   7    -7     4    -1     1    -3     3     0    -3
  k=6: -14    11    -5     2    -4     6    -3    -3     7
  k=7:  25   -16     7    -6    10    -9     0    10   -14
  k=8: -41    23   -13    16   -19     9    10   -24    24
  k=9:  64   -36    29   -35    28     1   -34    48   -34
As a triangle (read by rows):
   1
   1   0
   1   0   0
   2   1   1   1
   2   0  -1  -2  -3
   3   1   1   2   4   7
   4   1   0  -1  -3  -7 -14
   5   1   0   0   1   4  11  25
   6   1   0   0   0  -1  -5 -16 -41
   8   2   1   1   1   1   2   7  23  64
		

Crossrefs

Rows are: A000009 (k=0), A087897 (k=1, without first term), A378972 (k=2).
For primes we have A095195 or A376682.
For partitions we have A175804.
First column is A293467 (up to sign).
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Position of first zero in each row is A377285.
Triangle's row-sums are A378970, absolute A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A325258 a(1) = 1; otherwise, first differences of Levine's sequence A011784.

Original entry on oeis.org

1, 1, 1, 1, 3, 7, 28, 171, 2624, 172613, 139584150, 6837485347187, 266437138079023501057, 508009471379222384299345337895696, 37745517525533091954228691786161750063795478326636142, 5347426383812697233786139576220412396732847744407175515852823296919414647252347610750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

a(n) is the number of nonnegative integers k such that the maximum adjusted frequency depth among integer partitions of k is n. For example, the a(5) = 7 numbers are 7, 8, 9, 10, 11, 12, and 13.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is A323014(n). The maximum adjusted frequency depth for partitions of n is A325282(n).

Crossrefs

Programs

  • Mathematica
    grw[q_]:=Join@@Table[ConstantArray[i,q[[Length[q]-i+1]]],{i,Length[q]}];
    ReplacePart[Differences[Last/@NestList[grw,{1,1},9]],2->1]

A378972 Second differences of the strict partition numbers A000009.

Original entry on oeis.org

0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 3, 2, 3, 4, 3, 4, 6, 4, 6, 8, 6, 9, 10, 9, 12, 14, 13, 16, 19, 18, 22, 26, 24, 30, 34, 34, 40, 45, 46, 53, 60, 62, 70, 79, 82, 93, 104, 108, 122, 136, 142, 160, 176, 186, 208, 228, 243, 268
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			The strict partition numbers begin (A000009):
  1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, ...
with differences (A087897 without first term):
  0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, ...
with differences (a(n)):
  0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, ...
		

Crossrefs

For primes we have A036263.
The version for partitions is A053445.
For composites we have A073445.
For squarefree numbers we have A376590.
For nonsquarefree numbers we have A376593.
For powers of primes (inclusive) we have A376596.
For non powers of primes (inclusive) we have A376599.
Second row of A378622. See also:
- A293467 gives first column (up to sign).
- A377285 gives position of first zero in each row.
- A378970 gives row-sums.
- A378971 gives absolute value row-sums.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Differences[Table[PartitionsQ[n],{n,0,100}],2]

A325254 Number of integer partitions of n with the maximum adjusted frequency depth for partitions of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 3, 1, 3, 7, 10, 17, 27, 38, 1, 4, 8, 17, 31, 52, 83, 122, 181, 257, 361, 499, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 1, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754, 2570, 3742, 5269
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325283.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014. The maximum adjusted frequency depth for integer partitions of n is given by A325282.
Essentially, the last numbers of rows of the array in A225485. - Clark Kimberling, Sep 13 2022

Examples

			The a(1) = 1 through a(11) = 17 partitions:
  1  11  21  211  221   411    3211  3221   3321    5221     4322
                  311   3111         4211   4221    5311     4331
                  2111  21111        32111  4311    6211     4421
                                            5211    32221    5411
                                            32211   33211    6221
                                            42111   42211    6311
                                            321111  43111    7211
                                                    52111    33221
                                                    421111   42221
                                                    3211111  43211
                                                             52211
                                                             53111
                                                             62111
                                                             431111
                                                             521111
                                                             4211111
                                                             32111111
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==mfds[[n]]&]],{n,0,nn}]

A377285 Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear.

Original entry on oeis.org

0, 1, 1, 5, 5, 8, 20, 7, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Comments

Open problem: Do the 9th differences of the strict integer partition numbers contain a zero? If so, we must have a(9) > 10^5.
a(12) = 47. Conjecture: a(n) = 0 for n > 12. - Chai Wah Wu, Dec 15 2024

Examples

			The 7th differences of A000009 are: 25, -16, 7, -6, 10, -9, 0, 10, ... so a(7) = 7.
		

Crossrefs

For primes we have A376678.
For composites we have A377037.
For squarefree numbers we have A377042.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
Position of first zero in each row of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives first column (up to sign).
- A378970 gives row-sums.
- A378971 gives row-sums of absolute value.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Table[Position[Differences[PartitionsQ/@Range[0,100],k],0][[1,1]],{k,1,8}]
  • PARI
    a(n, nn=100) = my(q='q+O('q^nn), v=Vec(eta(q^2)/eta(q))); for (i=1, n, my(w=vector(#v-1, k, v[k+1]-v[k])); v = w;); my(vz=select(x->x==0, v, 1)); if (#vz, vz[1]); \\ Michel Marcus, Dec 15 2024

A325283 Heinz numbers of integer partitions with maximum adjusted frequency depth for partitions of that sum.

Original entry on oeis.org

2, 4, 6, 12, 18, 20, 24, 28, 40, 48, 60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A325254.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
  2:   {1}         (1)
  4:   {1,1}       (2,1)
  6:   {1,2}       (2,2,1)
  12:  {1,1,2}     (3,2,2,1)
  18:  {1,2,2}     (3,2,2,1)
  20:  {1,1,3}     (3,2,2,1)
  24:  {1,1,1,2}   (4,2,2,1)
  28:  {1,1,4}     (3,2,2,1)
  40:  {1,1,1,3}   (4,2,2,1)
  48:  {1,1,1,1,2} (5,2,2,1)
  60:  {1,1,2,3}   (4,3,2,2,1)
  84:  {1,1,2,4}   (4,3,2,2,1)
  90:  {1,2,2,3}   (4,3,2,2,1)
  120: {1,1,1,2,3} (5,3,2,2,1)
  126: {1,2,2,4}   (4,3,2,2,1)
  132: {1,1,2,5}   (4,3,2,2,1)
  140: {1,1,3,4}   (4,3,2,2,1)
  150: {1,2,3,3}   (4,3,2,2,1)
  156: {1,1,2,6}   (4,3,2,2,1)
  168: {1,1,1,2,4} (5,3,2,2,1)
  180: {1,1,2,2,3} (5,3,2,2,1)
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Select[Range[Prime[nn]],fdadj[primeMS[#]]==mfds[[Total[primeMS[#]]]]&]

A325281 Numbers of the form a*b, a*a*b, or a*a*b*c where a, b, and c are distinct primes. Numbers with sorted prime signature (1,1), (1,2), or (1,1,2).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

Also numbers whose adjusted frequency depth is one plus their number of prime factors counted with multiplicity. The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length plus 1. The enumeration of these partitions by sum is given by A127002.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   6:     {1,2} (2,2,1)
  10:     {1,3} (2,2,1)
  12:   {1,1,2} (3,2,2,1)
  14:     {1,4} (2,2,1)
  15:     {2,3} (2,2,1)
  18:   {1,2,2} (3,2,2,1)
  20:   {1,1,3} (3,2,2,1)
  21:     {2,4} (2,2,1)
  22:     {1,5} (2,2,1)
  26:     {1,6} (2,2,1)
  28:   {1,1,4} (3,2,2,1)
  33:     {2,5} (2,2,1)
  34:     {1,7} (2,2,1)
  35:     {3,4} (2,2,1)
  38:     {1,8} (2,2,1)
  39:     {2,6} (2,2,1)
  44:   {1,1,5} (3,2,2,1)
  45:   {2,2,3} (3,2,2,1)
  46:     {1,9} (2,2,1)
  50:   {1,3,3} (3,2,2,1)
  51:     {2,7} (2,2,1)
  52:   {1,1,6} (3,2,2,1)
  55:     {3,5} (2,2,1)
  57:     {2,8} (2,2,1)
  58:    {1,10} (2,2,1)
  60: {1,1,2,3} (4,3,2,2,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]+1&]

A325253 Number of integer partitions of n with adjusted frequency depth ceiling(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 6, 8, 17, 26, 25, 44, 53, 63, 83, 128, 168, 212, 273, 344, 429, 525, 662, 796, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 0, 0, 0, 0, 0, 1, 5, 14, 36, 76, 143, 269, 446, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 22 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(11) = 26 partitions:
    11  111  22    32  42    43   53    54      433        443
             1111  41  51    52   62    63      442        533
                       321   61   71    72      622        551
                       2211  421  431   81      811        722
                                  521   432     3331       911
                                  3311  531     4222       3332
                                        621     7111       5222
                                        222111  61111      8111
                                                222211     32222
                                                322111     33311
                                                331111     44111
                                                511111     71111
                                                2221111    222221
                                                4111111    322211
                                                22111111   332111
                                                31111111   422111
                                                211111111  611111
                                                           2222111
                                                           3221111
                                                           3311111
                                                           5111111
                                                           22211111
                                                           41111111
                                                           221111111
                                                           311111111
                                                           2111111111
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Ceiling[Sqrt[n]]&]],{n,0,30}]

A325271 Number of integer partitions of n with frequency depth round(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 6, 8, 11, 11, 19, 44, 53, 63, 83, 113, 124, 171, 190, 344, 429, 525, 662, 796, 981, 1182, 1442, 1709, 2096, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(10) = 11 partitions:
  (2)  (111)  (22)    (11111)  (33)      (43)   (53)    (54)      (64)
              (1111)           (222)     (52)   (62)    (63)      (73)
                               (111111)  (61)   (71)    (72)      (82)
                                         (421)  (431)   (81)      (91)
                                                (521)   (432)     (532)
                                                (3311)  (531)     (541)
                                                        (621)     (631)
                                                        (222111)  (721)
                                                                  (3322)
                                                                  (4321)
                                                                  (4411)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Round[Sqrt[n]]&]],{n,0,30}]
Showing 1-10 of 12 results. Next