cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127002 Number of partitions of n that have the form a+a+b+c where a,b,c are distinct.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 7, 8, 11, 11, 17, 17, 23, 23, 30, 31, 39, 38, 48, 49, 58, 58, 70, 70, 82, 82, 95, 96, 110, 109, 125, 126, 141, 141, 159, 159, 177, 177, 196, 197, 217, 216, 238, 239, 260, 260, 284, 284, 308, 308, 333, 334, 360, 359, 387, 388, 415, 415, 445
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2007

Keywords

Comments

From Gus Wiseman, Apr 19 2019: (Start)
Also the number of integer partitions of n - 4 of the form a+b, a+a+b, or a+a+b+c, ignoring ordering. A bijection can be constructed from the partitions described in the name by subtracting one from all parts and deleting zeros. These are also partitions with adjusted frequency depth (A323014, A325280) equal to their length plus one, and their Heinz numbers are given by A325281. For example, the a(7) = 1 through a(13) = 11 partitions are:
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(221) (411) (61) (71) (72)
(311) (322) (332) (81)
(331) (422) (441)
(511) (611) (522)
(3211) (3221) (711)
(4211) (3321)
(4221)
(4311)
(5211)
(End)

Examples

			a(10) counts these partitions: {1,1,2,6}, (1,1,3,5), {2,2,1,5}.
a(11) counts {1,1,2,7}, {1,1,3,6}, {1,1,4,5}, {2,2,1,6}, {2,2,3,4}, {3,3,1,4}, {4,4,1,2}
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(7) = 1 through a(13) = 11 partitions of the form a+a+b+c are the following. The Heinz numbers of these partitions are given by A085987.
  (3211)  (3221)  (3321)  (5221)  (4322)  (4332)  (4432)
          (4211)  (4221)  (5311)  (4331)  (4431)  (5332)
                  (4311)  (6211)  (4421)  (5322)  (5422)
                  (5211)          (5411)  (5331)  (5521)
                                  (6221)  (6411)  (6322)
                                  (6311)  (7221)  (6331)
                                  (7211)  (7311)  (6511)
                                          (8211)  (7411)
                                                  (8221)
                                                  (8311)
                                                  (9211)
(End)
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0] cat Coefficients(R!( x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, May 30 2019
    
  • Maple
    g:=sum(sum(sum(x^(i+j+k)*(x^i+x^j+x^k),i=1..j-1),j=2..k-1),k=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..65); # Emeric Deutsch, Jan 05 2007
    isA127002 := proc(p) local s; if nops(p) = 4 then s := convert(p,set) ; if nops(s) = 3 then RETURN(1) ; else RETURN(0) ; fi ; else RETURN(0) ; fi ; end:
    A127002 := proc(n) local part,res,p; part := combinat[partition](n) ; res := 0 ; for p from 1 to nops(part) do res := res+isA127002(op(p,part)) ; od ; RETURN(res) ; end:
    for n from 1 to 200 do print(A127002(n)) ; od ; # R. J. Mathar, Jan 07 2007
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Sort[Length/@Split[#]]=={1,1,2}&]],{n,70}] (* Gus Wiseman, Apr 19 2019 *)
    Rest[CoefficientList[Series[x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,70}], x]] (* G. C. Greubel, May 30 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(6), Vec(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)))) \\ G. C. Greubel, May 30 2019
    
  • Sage
    a=(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 30 2019

Formula

G.f.: x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) - Vladeta Jovovic, Jan 03 2007
G.f.: Sum_{k>=3} Sum_{j=2..k-1} Sum_{m=1..j-1} x^(m+j+k)*(x^m +x^j +x^k). - Emeric Deutsch, Jan 05 2007
a(n) = binomial(floor((n-1)/2),2) - floor((n-1)/3) - floor((n-1)/4) + floor(n/4). - Mircea Merca, Nov 23 2013
a(n) = A005044(n-4) + 2*A005044(n-3) + 3*A005044(n-2). - R. J. Mathar, Nov 23 2013

A325254 Number of integer partitions of n with the maximum adjusted frequency depth for partitions of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 3, 1, 3, 7, 10, 17, 27, 38, 1, 4, 8, 17, 31, 52, 83, 122, 181, 257, 361, 499, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 1, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754, 2570, 3742, 5269
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325283.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014. The maximum adjusted frequency depth for integer partitions of n is given by A325282.
Essentially, the last numbers of rows of the array in A225485. - Clark Kimberling, Sep 13 2022

Examples

			The a(1) = 1 through a(11) = 17 partitions:
  1  11  21  211  221   411    3211  3221   3321    5221     4322
                  311   3111         4211   4221    5311     4331
                  2111  21111        32111  4311    6211     4421
                                            5211    32221    5411
                                            32211   33211    6221
                                            42111   42211    6311
                                            321111  43111    7211
                                                    52111    33221
                                                    421111   42221
                                                    3211111  43211
                                                             52211
                                                             53111
                                                             62111
                                                             431111
                                                             521111
                                                             4211111
                                                             32111111
		

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    nn=30;
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==mfds[[n]]&]],{n,0,nn}]

A325246 Number of integer partitions of n with adjusted frequency depth equal to their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 4, 6, 8, 14, 15, 21, 26, 34, 42, 51, 60, 74, 86, 102, 117, 137, 155, 178, 202, 228, 255, 286, 317, 355, 390, 430, 472, 519, 566, 617, 670, 728, 787, 852, 916, 988, 1060, 1137, 1218, 1303, 1389, 1482, 1577, 1679, 1781, 1890, 2001, 2120
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325266.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(1) = 1 through a(10) = 14 partitions (A = 10):
  (1)  (2)   (3)  (4)   (5)     (6)     (7)     (8)      (9)      (A)
       (11)       (22)  (2111)  (33)    (421)   (44)     (432)    (55)
                                (321)   (2221)  (431)    (531)    (532)
                                (3111)  (4111)  (521)    (621)    (541)
                                                (5111)   (3222)   (631)
                                                (32111)  (6111)   (721)
                                                         (32211)  (3331)
                                                         (42111)  (4222)
                                                                  (7111)
                                                                  (32221)
                                                                  (33211)
                                                                  (42211)
                                                                  (43111)
                                                                  (52111)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Length[#]&]],{n,0,30}]

A325259 Numbers with one fewer distinct prime exponents than distinct prime factors.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with one fewer distinct multiplicities than distinct parts. The enumeration of these partitions by sum is given by A325244.

Examples

			The sequence of terms together with their prime indices begins:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   21: {2,4}
   22: {1,5}
   26: {1,6}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   46: {1,9}
   51: {2,7}
   55: {3,5}
   57: {2,8}
   58: {1,10}
   60: {1,1,2,3}
   62: {1,11}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]==Length[Union[Last/@FactorInteger[#]]]+1&]

Formula

A001221(a(n)) = A071625(a(n)) + 1.

A325266 Numbers whose adjusted frequency depth equals their number of prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 88, 89, 97, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 120, 121, 127, 130, 131, 135, 136, 137, 138, 139, 149
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2019

Keywords

Comments

The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is 1 plus the number of times one must apply A181819 to reach a prime number, where A181819(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length. The enumeration of these partitions by sum is given by A325246.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   2:       {1} (1)
   3:       {2} (1)
   4:     {1,1} (2,1)
   5:       {3} (1)
   7:       {4} (1)
   9:     {2,2} (2,1)
  11:       {5} (1)
  13:       {6} (1)
  17:       {7} (1)
  19:       {8} (1)
  23:       {9} (1)
  24: {1,1,1,2} (4,2,2,1)
  25:     {3,3} (2,1)
  29:      {10} (1)
  30:   {1,2,3} (3,3,1)
  31:      {11} (1)
  37:      {12} (1)
  40: {1,1,1,3} (4,2,2,1)
  41:      {13} (1)
  42:   {1,2,4} (3,3,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]&]
Showing 1-5 of 5 results.