A127002
Number of partitions of n that have the form a+a+b+c where a,b,c are distinct.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 7, 8, 11, 11, 17, 17, 23, 23, 30, 31, 39, 38, 48, 49, 58, 58, 70, 70, 82, 82, 95, 96, 110, 109, 125, 126, 141, 141, 159, 159, 177, 177, 196, 197, 217, 216, 238, 239, 260, 260, 284, 284, 308, 308, 333, 334, 360, 359, 387, 388, 415, 415, 445
Offset: 1
a(10) counts these partitions: {1,1,2,6}, (1,1,3,5), {2,2,1,5}.
a(11) counts {1,1,2,7}, {1,1,3,6}, {1,1,4,5}, {2,2,1,6}, {2,2,3,4}, {3,3,1,4}, {4,4,1,2}
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(7) = 1 through a(13) = 11 partitions of the form a+a+b+c are the following. The Heinz numbers of these partitions are given by A085987.
(3211) (3221) (3321) (5221) (4322) (4332) (4432)
(4211) (4221) (5311) (4331) (4431) (5332)
(4311) (6211) (4421) (5322) (5422)
(5211) (5411) (5331) (5521)
(6221) (6411) (6322)
(6311) (7221) (6331)
(7211) (7311) (6511)
(8211) (7411)
(8221)
(8311)
(9211)
(End)
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,-1,-1,-1,0,1)
Cf.
A000041,
A008284,
A085987,
A090858,
A116608,
A117571,
A183558,
A325242,
A325244,
A325280,
A325281.
-
R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0] cat Coefficients(R!( x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, May 30 2019
-
g:=sum(sum(sum(x^(i+j+k)*(x^i+x^j+x^k),i=1..j-1),j=2..k-1),k=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..65); # Emeric Deutsch, Jan 05 2007
isA127002 := proc(p) local s; if nops(p) = 4 then s := convert(p,set) ; if nops(s) = 3 then RETURN(1) ; else RETURN(0) ; fi ; else RETURN(0) ; fi ; end:
A127002 := proc(n) local part,res,p; part := combinat[partition](n) ; res := 0 ; for p from 1 to nops(part) do res := res+isA127002(op(p,part)) ; od ; RETURN(res) ; end:
for n from 1 to 200 do print(A127002(n)) ; od ; # R. J. Mathar, Jan 07 2007
-
Table[Length[Select[IntegerPartitions[n],Sort[Length/@Split[#]]=={1,1,2}&]],{n,70}] (* Gus Wiseman, Apr 19 2019 *)
Rest[CoefficientList[Series[x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,70}], x]] (* G. C. Greubel, May 30 2019 *)
-
my(x='x+O('x^70)); concat(vector(6), Vec(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)))) \\ G. C. Greubel, May 30 2019
-
a=(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 30 2019
A325254
Number of integer partitions of n with the maximum adjusted frequency depth for partitions of n.
Original entry on oeis.org
0, 1, 1, 1, 1, 3, 3, 1, 3, 7, 10, 17, 27, 38, 1, 4, 8, 17, 31, 52, 83, 122, 181, 257, 361, 499, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 1, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754, 2570, 3742, 5269
Offset: 0
The a(1) = 1 through a(11) = 17 partitions:
1 11 21 211 221 411 3211 3221 3321 5221 4322
311 3111 4211 4221 5311 4331
2111 21111 32111 4311 6211 4421
5211 32221 5411
32211 33211 6221
42111 42211 6311
321111 43111 7211
52111 33221
421111 42221
3211111 43211
52211
53111
62111
431111
521111
4211111
32111111
Cf.
A011784,
A181819,
A182850,
A182857,
A225486,
A323014,
A323023,
A325246,
A325258,
A325278,
A325281,
A325282,
A325283.
-
nn=30;
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
mfds=Table[Max@@fdadj/@IntegerPartitions[n],{n,nn}];
Table[Length[Select[IntegerPartitions[n],fdadj[#]==mfds[[n]]&]],{n,0,nn}]
A325246
Number of integer partitions of n with adjusted frequency depth equal to their length.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 4, 4, 6, 8, 14, 15, 21, 26, 34, 42, 51, 60, 74, 86, 102, 117, 137, 155, 178, 202, 228, 255, 286, 317, 355, 390, 430, 472, 519, 566, 617, 670, 728, 787, 852, 916, 988, 1060, 1137, 1218, 1303, 1389, 1482, 1577, 1679, 1781, 1890, 2001, 2120
Offset: 0
The a(1) = 1 through a(10) = 14 partitions (A = 10):
(1) (2) (3) (4) (5) (6) (7) (8) (9) (A)
(11) (22) (2111) (33) (421) (44) (432) (55)
(321) (2221) (431) (531) (532)
(3111) (4111) (521) (621) (541)
(5111) (3222) (631)
(32111) (6111) (721)
(32211) (3331)
(42111) (4222)
(7111)
(32221)
(33211)
(42211)
(43111)
(52111)
Cf.
A001222,
A008284,
A127002,
A181819,
A182850,
A225485,
A323014,
A323023,
A325254,
A325266,
A325277,
A325280,
A325281.
-
fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
Table[Length[Select[IntegerPartitions[n],fdadj[#]==Length[#]&]],{n,0,30}]
A325259
Numbers with one fewer distinct prime exponents than distinct prime factors.
Original entry on oeis.org
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159
Offset: 1
The sequence of terms together with their prime indices begins:
6: {1,2}
10: {1,3}
14: {1,4}
15: {2,3}
21: {2,4}
22: {1,5}
26: {1,6}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
46: {1,9}
51: {2,7}
55: {3,5}
57: {2,8}
58: {1,10}
60: {1,1,2,3}
62: {1,11}
Cf.
A056239,
A060687,
A090858,
A112798,
A116608,
A118914,
A130091,
A323023,
A325241,
A325242,
A325244,
A325270,
A325281.
A325266
Numbers whose adjusted frequency depth equals their number of prime factors counted with multiplicity.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 24, 25, 29, 30, 31, 37, 40, 41, 42, 43, 47, 49, 53, 54, 56, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 88, 89, 97, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 120, 121, 127, 130, 131, 135, 136, 137, 138, 139, 149
Offset: 1
The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
2: {1} (1)
3: {2} (1)
4: {1,1} (2,1)
5: {3} (1)
7: {4} (1)
9: {2,2} (2,1)
11: {5} (1)
13: {6} (1)
17: {7} (1)
19: {8} (1)
23: {9} (1)
24: {1,1,1,2} (4,2,2,1)
25: {3,3} (2,1)
29: {10} (1)
30: {1,2,3} (3,3,1)
31: {11} (1)
37: {12} (1)
40: {1,1,1,3} (4,2,2,1)
41: {13} (1)
42: {1,2,4} (3,3,1)
Cf.
A056239,
A112798,
A118914,
A181819,
A225485,
A323023,
A325246,
A325258,
A325277,
A325278,
A325281,
A325283.
-
fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
Select[Range[100],fdadj[#]==PrimeOmega[#]&]
Showing 1-5 of 5 results.
Comments