cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A325242 Irregular triangle read by rows with zeros removed where T(n,k) is the number of integer partitions of n with k distinct multiplicities, n > 0.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 9, 10, 12, 11, 19, 15, 26, 1, 13, 39, 4, 25, 47, 5, 19, 70, 12, 29, 89, 17, 33, 115, 28, 42, 148, 41, 39, 189, 69, 62, 235, 88, 55, 294, 141, 81, 362, 183, 1, 84, 450, 253, 5, 103, 558, 333, 8, 105, 669, 464, 17, 153, 817, 576, 29
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, the partition (32111) has multiplicities {1,1,3}, of which 2 are distinct, so is counted under T(8,2).

Examples

			Triangle begins:
   1
   2
   3
   4   1
   4   3
   8   3
   6   9
  10  12
  11  19
  15  26   1
  13  39   4
  25  47   5
  19  70  12
  29  89  17
  33 115  28
  42 148  41
  39 189  69
  62 235  88
  55 294 141
  81 362 183   1
Row n = 8 counts the following partitions:
  (8)         (332)
  (44)        (422)
  (53)        (611)
  (62)        (3221)
  (71)        (4211)
  (431)       (5111)
  (521)       (22211)
  (2222)      (32111)
  (3311)      (41111)
  (11111111)  (221111)
              (311111)
              (2111111)
		

Crossrefs

Row lengths are A056556. Row sums are A000041. Column k = 1 is A047966. Column k = 2 is A325243.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[Union[Length/@Split[#]]]==k&]],{n,20},{k,n}],0,2]

A183558 Number of partitions of n containing a clique of size 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 7, 13, 16, 25, 33, 49, 61, 90, 113, 156, 198, 269, 334, 448, 556, 726, 902, 1163, 1428, 1827, 2237, 2817, 3443, 4302, 5219, 6478, 7833, 9632, 11616, 14197, 17031, 20712, 24769, 29925, 35688, 42920, 50980, 61059, 72318, 86206, 101837, 120941
Offset: 0

Views

Author

Alois P. Heinz, Jan 05 2011

Keywords

Comments

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

Examples

			a(5) = 6, because 6 partitions of 5 contain (at least) one clique of size 1: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(1) = 1 through a(8) = 16 partitions are the following. The Heinz numbers of these partitions are given by A052485 (weak numbers).
  (1)  (2)  (3)   (4)    (5)     (6)      (7)       (8)
            (21)  (31)   (32)    (42)     (43)      (53)
                  (211)  (41)    (51)     (52)      (62)
                         (221)   (321)    (61)      (71)
                         (311)   (411)    (322)     (332)
                         (2111)  (3111)   (331)     (422)
                                 (21111)  (421)     (431)
                                          (511)     (521)
                                          (2221)    (611)
                                          (3211)    (3221)
                                          (4111)    (4211)
                                          (31111)   (5111)
                                          (211111)  (32111)
                                                    (41111)
                                                    (311111)
                                                    (2111111)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=1, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);
  • Mathematica
    max = 50; f = (1 - Product[1 - x^j + x^(2*j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Oct 01 2014. Edited by Gus Wiseman, Apr 19 2019 *)

Formula

G.f.: (1-Product_{j>0} (1-x^(j)+x^(2*j))) / (Product_{j>0} (1-x^j)).
From Vaclav Kotesovec, Nov 15 2016: (Start)
a(n) = A000041(n) - A007690(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). (End)

Extensions

a(0)=0 prepended by Gus Wiseman, Apr 19 2019

A090858 Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Comments

Number of solutions (p(1),p(2),...,p(n)), p(i)>=0,i=1..n, to p(1)+2*p(2)+...+n*p(n)=n such that |{i: p(i)<>0}| = p(1)+p(2)+...+p(n)-1.
Also number of partitions of n such that if k is the largest part, then, with exactly one exception, all the integers 1,2,...,k occur as parts. Example: a(7)=4 because we have [4,2,1], [3,3,1], [3,2,2] and [3,1,1,1,1]. - Emeric Deutsch, Apr 18 2006

Examples

			a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
  (11)  (22)   (221)  (33)   (322)   (44)    (441)   (55)    (443)
        (211)  (311)  (411)  (331)   (332)   (522)   (433)   (533)
                             (511)   (422)   (711)   (442)   (551)
                             (3211)  (611)   (3321)  (622)   (722)
                                     (3221)  (4221)  (811)   (911)
                                     (4211)  (4311)  (5221)  (4322)
                                             (5211)  (5311)  (4331)
                                                     (6211)  (4421)
                                                             (5411)
                                                             (6221)
                                                             (6311)
                                                             (7211)
                                                             (43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
  (2)  (22)  (32)   (222)   (322)    (332)     (432)      (3322)
       (31)  (311)  (3111)  (331)    (431)     (3222)     (3331)
                            (421)    (2222)    (4221)     (22222)
                            (31111)  (3311)    (4311)     (42211)
                                     (4211)    (33111)    (43111)
                                     (311111)  (42111)    (331111)
                                               (3111111)  (421111)
                                                          (31111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0,  b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
  • PARI
    alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015

Formula

G.f.: Sum_{k>0} x^(2*k)/(1+x^k) * Product_{k>0} (1+x^k). Convolution of 1-A048272(n) and A000009(n). a(n) = A036469(n) - A015723(n).
G.f.: sum(x^(k(k+1)/2)[(1-x^k)/x^(k-1)/(1-x)-k]/product(1-x^i,i=1..k), k=1..infinity). - Emeric Deutsch, Apr 18 2006
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (1 - log(2)) / (2*Pi) = 0.064273294789... - Vaclav Kotesovec, May 24 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
a(0) added by Franklin T. Adams-Watters, Nov 02 2015

A117571 Expansion of (1+2*x^2)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 4, 4, 6, 7, 7, 9, 10, 10, 12, 13, 13, 15, 16, 16, 18, 19, 19, 21, 22, 22, 24, 25, 25, 27, 28, 28, 30, 31, 31, 33, 34, 34, 36, 37, 37, 39, 40, 40, 42, 43, 43, 45, 46, 46, 48, 49, 49, 51, 52, 52, 54, 55, 55, 57, 58, 58, 60, 61, 61, 63, 64, 64, 66, 67, 67, 69, 70, 70, 72
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Row sums of A116948.
Place n+2 equally-spaced points around a circle, labeled 0,1,2,...,n+1. For each i = 0..n+1 such that 2i != i mod n+2, draw an (undirected) chord from i to 2i mod n+2. Then a(n) is the number of distinct chords. - Kival Ngaokrajang, May 13 2016 (Edited by N. J. A. Sloane, Jun 23 2016)
From Gus Wiseman, Apr 19 2019: (Start)
Also the number of integer partitions of n + 2 with 1 fewer distinct multiplicities than (not necessarily distinct) parts. These are partitions of the form (x,x), (x,y), (x,x,y), or (x,y,y). For example, the a(0) = 1 through a(8) = 9 partitions are the following. The Heinz numbers of these partitions are given by A325270.
(11) (21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(311) (411) (322) (71) (81) (82)
(331) (332) (441) (91)
(511) (422) (522) (433)
(611) (711) (442)
(622)
(811)
(End)

Crossrefs

Programs

  • Magma
    [1 + Floor(2*n/3) + Floor((n+1)/3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 25 2016
  • Maple
    A117571:=n->1 + floor(2*n/3) + floor((n+1)/3): seq(A117571(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
  • Mathematica
    CoefficientList[Series[(1 + 2 x^2)/((1 - x) (1 - x^3)), {x, 0, 71}], x] (* Michael De Vlieger, May 13 2016 *)

Formula

G.f.: (1+2*x^2)/((1-x)*(1-x^3)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = cos(2*Pi*n/3+Pi/6)/sqrt(3)-sin(2*Pi*n/3+Pi/6)/3+(3n+2)/3.
a(n) = Sum_{k=0..n} 2*A001045(L((n-k+2)/3)) where L(j/p) is the Legendre symbol of j and p.
a(n) = 1 + floor((n+1)/3) + floor(2*n/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) = n+sign((n-1) mod 3). - Wesley Ivan Hurt, Sep 25 2017

A325244 Number of integer partitions of n with one fewer distinct multiplicities than distinct parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 7, 12, 16, 21, 33, 38, 50, 75, 87, 111, 150, 185, 244, 307, 373, 461, 585, 702, 856, 1043, 1255, 1498, 1822, 2143, 2565, 3064, 3607, 4251, 5064, 5920, 6953, 8174, 9503, 11064, 12927, 14921, 17320, 19986, 23067, 26485, 30499, 34894
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, (32211) has two distinct multiplicities (1, 2) and three distinct parts (1, 2, 3) so is counted under a(9).
The Heinz numbers of these partitions are given by A325259.

Examples

			The a(3) = 1 through a(10) = 16 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)      (64)
              (41)  (51)    (52)    (62)     (63)      (73)
                    (2211)  (61)    (71)     (72)      (82)
                            (3211)  (3221)   (81)      (91)
                                    (3311)   (3321)    (3322)
                                    (4211)   (4221)    (4411)
                                    (32111)  (4311)    (5221)
                                             (5211)    (5311)
                                             (32211)   (6211)
                                             (42111)   (32221)
                                             (222111)  (33211)
                                             (321111)  (42211)
                                                       (43111)
                                                       (52111)
                                                       (421111)
                                                       (3211111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Union[#]]==Length[Union[Length/@Split[#]]]+1&]],{n,0,30}]

A325282 Maximum adjusted frequency depth among integer partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (A325280).
Run lengths are A325258, i.e., first differences of Levine's sequence A011784 (except at n = 1).

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Max@@fdadj/@IntegerPartitions[n],{n,0,30}]

Formula

a(0) = 0; a(1) = 1; a(n > 1) = A225486(n).

A325245 Number of integer partitions of n with adjusted frequency depth 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 8, 11, 11, 19, 17, 25, 29, 37, 37, 56, 53, 75, 80, 99, 103, 145, 143, 181, 199, 247, 255, 336, 339, 426, 459, 548, 590, 738, 759, 916, 999, 1192, 1259, 1529, 1609, 1915, 2083, 2406, 2589, 3085, 3267, 3809, 4134, 4763, 5119, 5964
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(3) = 1 through a(10) = 11 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)      (64)
              (41)  (51)    (52)   (62)    (63)      (73)
                    (321)   (61)   (71)    (72)      (82)
                    (2211)  (421)  (431)   (81)      (91)
                                   (521)   (432)     (532)
                                   (3311)  (531)     (541)
                                           (621)     (631)
                                           (222111)  (721)
                                                     (3322)
                                                     (4321)
                                                     (4411)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==3&]],{n,0,30}]

A325246 Number of integer partitions of n with adjusted frequency depth equal to their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 4, 6, 8, 14, 15, 21, 26, 34, 42, 51, 60, 74, 86, 102, 117, 137, 155, 178, 202, 228, 255, 286, 317, 355, 390, 430, 472, 519, 566, 617, 670, 728, 787, 852, 916, 988, 1060, 1137, 1218, 1303, 1389, 1482, 1577, 1679, 1781, 1890, 2001, 2120
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325266.
The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2). The enumeration of integer partitions by adjusted frequency depth is given by A325280. The adjusted frequency depth of the integer partition with Heinz number n is given by A323014.

Examples

			The a(1) = 1 through a(10) = 14 partitions (A = 10):
  (1)  (2)   (3)  (4)   (5)     (6)     (7)     (8)      (9)      (A)
       (11)       (22)  (2111)  (33)    (421)   (44)     (432)    (55)
                                (321)   (2221)  (431)    (531)    (532)
                                (3111)  (4111)  (521)    (621)    (541)
                                                (5111)   (3222)   (631)
                                                (32111)  (6111)   (721)
                                                         (32211)  (3331)
                                                         (42111)  (4222)
                                                                  (7111)
                                                                  (32221)
                                                                  (33211)
                                                                  (42211)
                                                                  (43111)
                                                                  (52111)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Length[#]&]],{n,0,30}]

A325281 Numbers of the form a*b, a*a*b, or a*a*b*c where a, b, and c are distinct primes. Numbers with sorted prime signature (1,1), (1,2), or (1,1,2).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

Also numbers whose adjusted frequency depth is one plus their number of prime factors counted with multiplicity. The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length plus 1. The enumeration of these partitions by sum is given by A127002.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   6:     {1,2} (2,2,1)
  10:     {1,3} (2,2,1)
  12:   {1,1,2} (3,2,2,1)
  14:     {1,4} (2,2,1)
  15:     {2,3} (2,2,1)
  18:   {1,2,2} (3,2,2,1)
  20:   {1,1,3} (3,2,2,1)
  21:     {2,4} (2,2,1)
  22:     {1,5} (2,2,1)
  26:     {1,6} (2,2,1)
  28:   {1,1,4} (3,2,2,1)
  33:     {2,5} (2,2,1)
  34:     {1,7} (2,2,1)
  35:     {3,4} (2,2,1)
  38:     {1,8} (2,2,1)
  39:     {2,6} (2,2,1)
  44:   {1,1,5} (3,2,2,1)
  45:   {2,2,3} (3,2,2,1)
  46:     {1,9} (2,2,1)
  50:   {1,3,3} (3,2,2,1)
  51:     {2,7} (2,2,1)
  52:   {1,1,6} (3,2,2,1)
  55:     {3,5} (2,2,1)
  57:     {2,8} (2,2,1)
  58:    {1,10} (2,2,1)
  60: {1,1,2,3} (4,3,2,2,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]+1&]

A325284 Numbers whose prime indices form an initial interval with a single hole: (1, 2, ..., x, x + 2, ..., m - 1, m), where x can be 0 but must be less than m - 1.

Original entry on oeis.org

3, 9, 10, 15, 20, 27, 40, 42, 45, 50, 70, 75, 80, 81, 84, 100, 105, 126, 135, 140, 160, 168, 200, 225, 243, 250, 252, 280, 294, 315, 320, 330, 336, 350, 375, 378, 400, 405, 462, 490, 500, 504, 525, 560, 588, 640, 660, 672, 675, 700, 729, 735, 756, 770, 800
Offset: 1

Views

Author

Gus Wiseman, Apr 19 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts form an initial interval with a single hole. The enumeration of these partitions by sum is given by A090858.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}
    9: {2,2}
   10: {1,3}
   15: {2,3}
   20: {1,1,3}
   27: {2,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   45: {2,2,3}
   50: {1,3,3}
   70: {1,3,4}
   75: {2,3,3}
   80: {1,1,1,1,3}
   81: {2,2,2,2}
   84: {1,1,2,4}
  100: {1,1,3,3}
  105: {2,3,4}
  126: {1,2,2,4}
  135: {2,2,2,3}
  140: {1,1,3,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Length[Complement[Range[PrimePi[FactorInteger[#][[-1,1]]]],PrimePi/@First/@FactorInteger[#]]]==1&]
Showing 1-10 of 11 results. Next