cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 38 results. Next

A007690 Number of partitions of n in which no part occurs just once.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 2, 6, 5, 9, 7, 16, 11, 22, 20, 33, 28, 51, 42, 71, 66, 100, 92, 147, 131, 199, 193, 275, 263, 385, 364, 516, 511, 694, 686, 946, 925, 1246, 1260, 1650, 1663, 2194, 2202, 2857, 2928, 3721, 3813, 4866, 4967, 6257, 6487, 8051, 8342, 10369
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into parts, each larger than 1, such that consecutive integers do not both appear as parts. Example: a(6)=4 because we have [6], [4,2], [3,3] and [2,2,2]. - Emeric Deutsch, Feb 16 2006
Also number of partitions of n into parts divisible by 2 or 3. - Alexander E. Holroyd (holroyd(AT)math.ubc.ca), May 28 2008
Infinite convolution product of [1,0,1,1,1,1,1] aerated n-1 times. i.e. [1,0,1,1,1,1,1] * [1,0,0,0,1,0,1] * [1,0,0,0,0,0,1] * ... . - Mats Granvik, Aug 07 2009

Examples

			a(6) = 4 because we have [3,3], [2,2,2], [2,2,1,1] and [1,1,1,1,1,1].
G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 4*x^6 + 2*x^7 + 6*x^8 + 5*x^9 + 9*x^10 + ...
G.f. = q + q^49 + q^73 + 2*q^97 + q^121 + 4*q^145 + 2*q^169 + 6*q^193 + ...
		

References

  • G. E. Andrews, Number Theory, Dover Publications, 1994. page 197. MR1298627
  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976, p. 14, Example 9.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.5.6).
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 242.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 54, Article 300.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    G:= mul((1-x^j+x^(2*j))/(1-x^j), j=1..70): Gser:=series(G, x, 60): seq(coeff(Gser, x, n), n=0..54); # Emeric Deutsch, Feb 10 2006
  • Mathematica
    nn=40;CoefficientList[Series[Product[1/(1-x^i)-x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Dec 02 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^6] / (QPochhammer[ x^2] QPochhammer[ x^3]), {x, 0, n}]; (* Michael Somos, Feb 22 2015 *)
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2015 *)
    Table[Length@Select[Tally /@ IntegerPartitions@n, AllTrue[#, Last[#] > 1 &] &], {n, 0, 54}] (* Robert Price, Aug 17 2020 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A) / (eta(x^2 + A) * eta(x^3 + A)), n))}; /* Michael Somos, Apr 21 2004 */

Formula

G.f.: Product_{k>0 is a multiple of 2 or 3} (1/(1-x^k)). - Christian G. Bower, Jun 23 2000
G.f.: Product_{j>=1} (1+x^(3*j)) / (1-x^(2*j)). - Jon Perry, Mar 29 2004
Euler transform of period 6 sequence [0, 1, 1, 1, 0, 1, ...]. - Michael Somos, Apr 21 2004
G.f. is a period 1 Fourier series which satisfies f(-1 / (864 t)) = 1/6 (t/i)^(-1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A137566. - Michael Somos, Jan 26 2008
From Alois P. Heinz, Oct 09 2011: (Start)
a(n) = A000041(n) - A183558(n).
a(n) = A183568(n,0) - A183568(n,1).
G.f.: Product_{j>0} (1-x^j+x^(2*j)) / (1-x^j). (End)
a(n) ~ exp(2*Pi*sqrt(n)/3)/(6*sqrt(2)*n). - Vaclav Kotesovec, Sep 23 2015
a(n) = A000009(n/3) - Sum_{k>=1} (-1)^k a(n - k*(3*k +/- 1)). - Peter J. Taylor, May 16 2019

Extensions

Minor edits by Vaclav Kotesovec, Aug 23 2015

A325242 Irregular triangle read by rows with zeros removed where T(n,k) is the number of integer partitions of n with k distinct multiplicities, n > 0.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 9, 10, 12, 11, 19, 15, 26, 1, 13, 39, 4, 25, 47, 5, 19, 70, 12, 29, 89, 17, 33, 115, 28, 42, 148, 41, 39, 189, 69, 62, 235, 88, 55, 294, 141, 81, 362, 183, 1, 84, 450, 253, 5, 103, 558, 333, 8, 105, 669, 464, 17, 153, 817, 576, 29
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, the partition (32111) has multiplicities {1,1,3}, of which 2 are distinct, so is counted under T(8,2).

Examples

			Triangle begins:
   1
   2
   3
   4   1
   4   3
   8   3
   6   9
  10  12
  11  19
  15  26   1
  13  39   4
  25  47   5
  19  70  12
  29  89  17
  33 115  28
  42 148  41
  39 189  69
  62 235  88
  55 294 141
  81 362 183   1
Row n = 8 counts the following partitions:
  (8)         (332)
  (44)        (422)
  (53)        (611)
  (62)        (3221)
  (71)        (4211)
  (431)       (5111)
  (521)       (22211)
  (2222)      (32111)
  (3311)      (41111)
  (11111111)  (221111)
              (311111)
              (2111111)
		

Crossrefs

Row lengths are A056556. Row sums are A000041. Column k = 1 is A047966. Column k = 2 is A325243.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[Union[Length/@Split[#]]]==k&]],{n,20},{k,n}],0,2]

A268193 Triangle read by rows: T(n,k) (n>=1, k>=0) is the number of partitions of n which have k distinct parts i such that i+1 is also a part.

Original entry on oeis.org

1, 2, 2, 1, 4, 1, 4, 3, 8, 2, 1, 8, 6, 1, 13, 7, 2, 15, 11, 4, 22, 15, 4, 1, 24, 24, 7, 1, 37, 26, 12, 2, 40, 42, 16, 3, 57, 50, 22, 6, 64, 72, 33, 6, 1, 89, 84, 46, 11, 1, 98, 122, 60, 15, 2, 135, 141, 82, 24, 3, 149, 198, 106, 32, 5, 199, 231, 144, 45, 8, 224, 309, 187, 61, 10, 1
Offset: 1

Views

Author

Emeric Deutsch, Feb 13 2016

Keywords

Comments

T(n,k) = number of partitions of n having k singleton parts other than the largest part. Example: T(5,1) = 3 because we have [4,1'], [3,2'], [2,2,1'] (the counted singletons are marked). These partitions are connected by conjugation to those in the definition.
From Gus Wiseman, Jul 10 2025: (Start)
Also the number of integer partitions of n with k maximal subsequences of consecutive parts not decreasing by 1 (anti-runs). For example, row n = 8 counts partitions with the following anti-runs:
((8)) ((3,3),(2)) ((3),(2,2),(1))
((4,4)) ((4),(3,1)) ((3),(2),(1,1,1))
((5,3)) ((5,2),(1))
((6,2)) ((4,2),(1,1))
((7,1)) ((2,2,2),(1,1))
((4,2,2)) ((2,2),(1,1,1,1))
((6,1,1)) ((2),(1,1,1,1,1,1))
((2,2,2,2))
((3,3,1,1))
((5,1,1,1))
((4,1,1,1,1))
((3,1,1,1,1,1))
((1,1,1,1,1,1,1,1))
(End)

Examples

			T(5,1) = 3 because we have [3,2], [2,2,1], and [2,1,1,1].
T(9,2) = 4 because we have [3,2',1,1,1,1'], [3,2,2',1,1'], [3,3,2',1'], and [4,3',2'] (the i's are marked).
Triangle starts:
  1;
  2;
  2,1;
  4,1;
  4,3;
  8,2,1;
  8,6,1;
From _Gus Wiseman_, Jul 11 2025: (Start)
Row n = 8 counts the following partitions by number of singleton parts other than the largest part:
  (8)                (5,3)        (4,3,1)
  (4,4)              (6,2)        (5,2,1)
  (4,2,2)            (7,1)
  (6,1,1)            (3,3,2)
  (2,2,2,2)          (3,2,2,1)
  (3,3,1,1)          (4,2,1,1)
  (5,1,1,1)          (3,2,1,1,1)
  (2,2,2,1,1)
  (4,1,1,1,1)
  (2,2,1,1,1,1)
  (3,1,1,1,1,1)
  (2,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1)
(End)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
For distinct parts instead of anti-runs we have A116608.
Column k = 1 is A116931.
For runs instead of anti-runs we have A384881.
The strict case is A384905.
The corresponding rank statistic is A356228, non-strict version A384906.
The proper case is A385814, runs A385815.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.

Programs

  • Maple
    g := add(x^j*mul(1+t*x^i+x^(2*i)/(1-x^i), i = 1 .. j-1)/(1-x^j), j = 1 .. 80): gser := simplify(series(g, x = 0, 27)): for n from 0 to 25 do P[n] := sort(coeff(gser, x, n)) end do: for n to 25 do seq(coeff(P[n], t, k), k = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i, t) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1, t or j>0)*
          `if`(t and j=1, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, false)):
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 13 2016
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, t || j > 0]*If[t && j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, False]]; Table[T[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[Split[#,#1!=#2+1&]]==k&]],{n,0,10},{k,0,n}] (* Delete zeros for A268193. Gus Wiseman, Jul 10 2025 *)

Formula

T(n,0) = A116931(n).
Sum_{k>=1} T(n, k) = A000041(n) (the partition numbers).
Sum_{k>=1} k*T(n,k) = A024786(n-1).
G.f.: G(t,x) = Sum_{j>=1} ((x^j/(1-x^j))*Product_{i=1..j-1} (1 + tx^i + x^{2i}/(1-x^i))).

A116674 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k distinct parts (n>=1, k>=1).

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 3, 1, 5, 3, 4, 1, 2, 7, 1, 2, 8, 2, 2, 10, 3, 2, 11, 5, 2, 13, 7, 4, 12, 11, 1, 19, 11, 1, 2, 18, 17, 1, 3, 20, 21, 2, 2, 22, 27, 3, 2, 25, 32, 5, 4, 24, 41, 7, 2, 30, 46, 11, 2, 31, 56, 15, 2, 36, 62, 22, 3, 33, 80, 25, 1, 2, 39, 87, 36, 1, 4, 38, 103, 45, 2, 2, 45
Offset: 1

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

Row n has floor(sqrt(n)) terms. Row sums yield A000009. T(n,1)=A001227(n) (n>=1). Sum(k*T(n,k),k>=1)=A038348(n-1) (n>=1).
Conjecture: Also the number of strict integer partitions of n with k maximal runs of consecutive parts decreasing by 1. - Gus Wiseman, Jun 24 2025

Examples

			From _Gus Wiseman_, Jun 24 2025: (Start)
Triangle begins:
   1:  1
   2:  1
   3:  2
   4:  1  1
   5:  2  1
   6:  2  2
   7:  2  3
   8:  1  5
   9:  3  4  1
  10:  2  7  1
  11:  2  8  2
  12:  2 10  3
  13:  2 11  5
  14:  2 13  7
  15:  4 12 11
  16:  1 19 11  1
  17:  2 18 17  1
  18:  3 20 21  2
  19:  2 22 27  3
  20:  2 25 32  5
Row n = 9 counts the following partitions into odd parts by number of distinct parts:
  (9)                  (7,1,1)          (5,3,1)
  (3,3,3)              (3,3,1,1,1)
  (1,1,1,1,1,1,1,1,1)  (5,1,1,1,1)
                       (3,1,1,1,1,1,1)
Row n = 9 counts the following strict partitions by number of maximal runs:
  (9)      (6,3)    (5,3,1)
  (5,4)    (7,2)
  (4,3,2)  (8,1)
           (6,2,1)
(End)
		

Crossrefs

Row sums are A000009, strict case of A000041.
Row lengths are A000196.
Leading terms are A001227.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat partitions, ranks A066311 or A073491.
A047993 counts partitions with max part = length.
A152140 counts partitions into odd parts by length.
A268193 counts partitions by number of maximal anti-runs, strict A384905.
A384881 counts partitions by number of maximal runs.

Programs

  • Maple
    g:=product(1+t*x^(2*j-1)/(1-x^(2*j-1)),j=1..35): gser:=simplify(series(g,x=0,34)): for n from 1 to 29 do P[n]:=coeff(gser,x^n) od: for n from 1 to 29 do seq(coeff(P[n],t,j),j=1..floor(sqrt(n))) od; # yields sequence in triangular form
    # second Maple program:
    with(numtheory):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-2)*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(
             b(n, iquo(n+1, 2)*2-1)):
    seq(T(n), n=1..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-2]*If[j == 0, 1, x], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, Quotient[n+1, 2]*2-1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OddQ[Times@@#]&&Length[Union[#]]==k&]],{n,1,12},{k,1,Floor[Sqrt[n]]}] (*  Gus Wiseman, Jun 24 2025 *)

Formula

G.f.: product(1+tx^(2j-1)/(1-x^(2j-1)), j=1..infinity).

A183568 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n containing a clique of size k.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 0, 1, 5, 3, 2, 0, 1, 7, 6, 2, 1, 0, 1, 11, 7, 3, 2, 1, 0, 1, 15, 13, 5, 3, 1, 1, 0, 1, 22, 16, 9, 3, 3, 1, 1, 0, 1, 30, 25, 10, 6, 3, 2, 1, 1, 0, 1, 42, 33, 16, 8, 5, 3, 2, 1, 1, 0, 1, 56, 49, 23, 13, 6, 5, 2, 2, 1, 1, 0, 1, 77, 61, 31, 15, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 05 2011

Keywords

Comments

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique. Each partition has a clique of size 0.

Examples

			T(5,2) = 2, because 2 (of 7) partitions of 5 contain (at least) one clique of size 2: [1,2,2], [1,1,3].
Triangle T(n,k) begins:
   1;
   1,  1;
   2,  1, 1;
   3,  2, 0, 1;
   5,  3, 2, 0, 1;
   7,  6, 2, 1, 0, 1;
  11,  7, 3, 2, 1, 0, 1;
  15, 13, 5, 3, 1, 1, 0, 1;
		

Crossrefs

Differences between columns 0 and k (0A007690, A116645, A118807, A184639, A184640, A184641, A184642, A184643, A184644, A184645.
T(2*k+1,k+1) gives A002865.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=k, [l[1]$2], l))(b(n-i*j, i-1, k)), j=0..n/i)))
        end:
    T:= (n, k)-> (l-> l[`if`(k=0, 1, 2)])(b(n, n, k)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == k, {l[[1]], l[[1]]}, l]][b[n - i*j, i-1, k]], {j, 0, n/i}]] ]; t[n_, k_] := Function[l, l[[If[k == 0, 1, 2]]]][b[n, n, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)

Formula

G.f. of column k: (1-Product_{j>0} (1-x^(k*j)+x^((k+1)*j))) / (Product_{j>0} (1-x^j)).

A356606 Number of strict integer partitions of n where all parts have neighbors.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 2, 3, 2, 2, 5, 2, 4, 5, 5, 4, 8, 5, 7, 9, 8, 8, 13, 10, 11, 16, 13, 15, 20, 18, 18, 27, 21, 26, 31, 30, 30, 43, 34, 42, 49, 48, 48, 65, 56, 65, 76, 74, 77, 97, 88, 98, 117, 111, 119, 143, 137, 146, 175, 165, 182, 208
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2022

Keywords

Comments

A part x has a neighbor if either x - 1 or x + 1 is a part.

Examples

			The a(n) partitions for n = 0, 1, 3, 9, 15, 18, 20, 24 (A = 10, B = 11):
  ()  .  (21)  (54)   (87)     (765)    (7643)   (987)
               (432)  (654)    (6543)   (8732)   (8754)
                      (54321)  (7632)   (9821)   (9843)
                               (8721)   (65432)  (A932)
                               (65421)           (BA21)
                                                 (87432)
                                                 (87621)
                                                 (765321)
		

Crossrefs

This is the strict case of A355393 and A355394.
The complement is counted by A356607, non-strict A356235 and A356236.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Function[ptn,UnsameQ@@ptn&&And@@Table[MemberQ[ptn,x-1]||MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]
  • Python
    # see linked program

Formula

G.f.: 1 + Sum_{i>0} A(x,i), where A(x,i) = x^((2*i)+1) * G(x,i+1) for i > 0, is the g.f. for partitions of this kind with least part i, and G(x,k) = 1 + x^(k+1) * G(x,k+1) + Sum_{m>=0} x^(2*(k+m)+5) * G(x,m+k+3). - John Tyler Rascoe, Feb 16 2024

A384884 Number of integer partitions of n with all distinct lengths of maximal gapless runs (decreasing by 0 or 1).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 46, 60, 79, 104, 131, 170, 215, 271, 342, 431, 535, 670, 830, 1019, 1258, 1547, 1881, 2298, 2787, 3359, 4061, 4890, 5849, 7010, 8361, 9942, 11825, 14021, 16558, 19561, 23057, 27084, 31821, 37312, 43627, 50999, 59500, 69267
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The partition y = (6,6,4,3,3,2) has maximal gapless runs ((6,6),(4,3,3,2)), with lengths (2,4), so y is counted under a(24).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (222)     (322)      (332)
                    (1111)  (311)    (321)     (331)      (422)
                            (2111)   (411)     (421)      (431)
                            (11111)  (2211)    (511)      (521)
                                     (3111)    (2221)     (611)
                                     (21111)   (3211)     (2222)
                                     (111111)  (4111)     (3221)
                                               (22111)    (4211)
                                               (31111)    (5111)
                                               (211111)   (22211)
                                               (1111111)  (32111)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For subsets instead of strict partitions we have A384175.
The strict case is A384178, for anti-runs A384880.
For anti-runs we have A384885.
For equal instead of distinct lengths we have A384887.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]

A239955 Number of partitions p of n such that (number of distinct parts of p) <= max(p) - min(p).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 27, 38, 54, 75, 104, 137, 187, 245, 322, 418, 542, 691, 887, 1121, 1417, 1777, 2228, 2767, 3441, 4247, 5235, 6424, 7871, 9594, 11688, 14173, 17168, 20723, 24979, 30008, 36010, 43085, 51479, 61357, 73032, 86718, 102852, 121718
Offset: 0

Views

Author

Clark Kimberling, Mar 30 2014

Keywords

Comments

From Gus Wiseman, Jun 26 2022: (Start)
Also the number of partitions of n with at least one gap, i.e., partitions whose parts do not form a contiguous interval. These partitions are ranked by A073492. For example, the a(0) = 0 through a(8) = 12 partitions are:
. . . . (31) (41) (42) (52) (53)
(311) (51) (61) (62)
(411) (331) (71)
(3111) (421) (422)
(511) (431)
(4111) (521)
(31111) (611)
(3311)
(4211)
(5111)
(41111)
(311111)
Also the number of non-constant partitions of n with a repeated non-maximal part, ranked by A065201. The a(0) = 0 through a(8) = 12 partitions are:
. . . . (211) (311) (411) (322) (422)
(2111) (2211) (511) (611)
(3111) (3211) (3221)
(21111) (4111) (3311)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(End)

Examples

			a(6) counts these 4 partitions:  51, 42, 411, 3111.
		

Crossrefs

The complement is counted by A034296 (strict A137793), ranked by A073491.
These partitions are ranked by A073492, conjugate A065201.
Applying the condition to the conjugate gives A350839, ranked by A350841.
A000041 counts integer partitions, strict A000009.
A090858 counts partitions with a single hole, ranked by A325284.
A116931 counts partitions with differences != -1, strict A003114.
A116932 counts partitions with differences != -1 or -2, strict A025157.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> combinat[numbpart](n)-add(b(n, k), k=0..n):
    seq(a(n), n=0..47);  # Alois P. Heinz, Aug 18 2025
  • Mathematica
    z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
    Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}]  (*A239954*)
    Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*)
    Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*)
    Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}]  (*A034296*)
    Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*)
    (* second program *)
    Table[Length[Select[IntegerPartitions[n],Min@@Differences[#]<-1&]],{n,0,30}] (* Gus Wiseman, Jun 26 2022 *)
  • PARI
    qs(a,q,n) = {prod(k=0,n,1-a*q^k)}
    A_q(N) = {if(N<4, vector(N+1,i,0), my(q='q+O('q^(N-2)), g= sum(i=2,N+1, q^i/qs(q,q,i-1)*sum(j=1,i-1, q^(2*j)*qs(q^2,q^2,j-2)))); concat([0,0,0,0], Vec(g)))} \\ John Tyler Rascoe, Aug 16 2025

Formula

a(n) = A000041(n) - A034296(n).
G.f.: Sum_{i>1} q^i/(q;q){i-1} * Sum{j=1..i-1} (q^2;q^2){j-2} where (a;q)_k = Product{i>=0..k} (1-a*q^i). - John Tyler Rascoe, Aug 16 2025

A243978 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: T(n,k) is the number of partitions of n where the minimal multiplicity of any part is k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 1, 0, 6, 0, 0, 0, 1, 0, 7, 2, 1, 0, 0, 1, 0, 13, 1, 0, 0, 0, 0, 1, 0, 16, 4, 0, 1, 0, 0, 0, 1, 0, 25, 2, 2, 0, 0, 0, 0, 0, 1, 0, 33, 6, 1, 0, 1, 0, 0, 0, 0, 1, 0, 49, 4, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 61, 9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1, 0, 90, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 156, 9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Joerg Arndt and Alois P. Heinz, Jun 28 2014

Keywords

Comments

T(0,0) = 1 by convention.
Row sums are A000041.

Examples

			Triangle starts:
00:  1;
01:  0,   1;
02:  0,   1,  1;
03:  0,   2,  0, 1;
04:  0,   3,  1, 0, 1;
05:  0,   6,  0, 0, 0, 1;
06:  0,   7,  2, 1, 0, 0, 1;
07:  0,  13,  1, 0, 0, 0, 0, 1;
08:  0,  16,  4, 0, 1, 0, 0, 0, 1;
09:  0,  25,  2, 2, 0, 0, 0, 0, 0, 1;
10:  0,  33,  6, 1, 0, 1, 0, 0, 0, 0, 1;
11:  0,  49,  4, 2, 0, 0, 0, 0, 0, 0, 0, 1;
12:  0,  61,  9, 3, 2, 0, 1, 0, 0, 0, 0, 0, 1;
13:  0,  90,  6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
14:  0, 113, 16, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1;
15:  0, 156,  9, 7, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
16:  0, 198, 23, 3, 4, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1;
17:  0, 269, 18, 5, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
18:  0, 334, 34, 9, 3, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1;
19:  0, 448, 27, 8, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
20:  0, 556, 51, 7, 6, 3, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
...
The A000041(9) = 30 partitions of 9 with the least multiplicities of any part are:
01:  [ 1 1 1 1 1 1 1 1 1 ]   9
02:  [ 1 1 1 1 1 1 1 2 ]   1
03:  [ 1 1 1 1 1 1 3 ]   1
04:  [ 1 1 1 1 1 2 2 ]   2
05:  [ 1 1 1 1 1 4 ]   1
06:  [ 1 1 1 1 2 3 ]   1
07:  [ 1 1 1 1 5 ]   1
08:  [ 1 1 1 2 2 2 ]   3
09:  [ 1 1 1 2 4 ]   1
10:  [ 1 1 1 3 3 ]   2
11:  [ 1 1 1 6 ]   1
12:  [ 1 1 2 2 3 ]   1
13:  [ 1 1 2 5 ]   1
14:  [ 1 1 3 4 ]   1
15:  [ 1 1 7 ]   1
16:  [ 1 2 2 2 2 ]   1
17:  [ 1 2 2 4 ]   1
18:  [ 1 2 3 3 ]   1
19:  [ 1 2 6 ]   1
20:  [ 1 3 5 ]   1
21:  [ 1 4 4 ]   1
22:  [ 1 8 ]   1
23:  [ 2 2 2 3 ]   1
24:  [ 2 2 5 ]   1
25:  [ 2 3 4 ]   1
26:  [ 2 7 ]   1
27:  [ 3 3 3 ]   3
28:  [ 3 6 ]   1
29:  [ 4 5 ]   1
30:  [ 9 ]   1
Therefore row n=9 is [0, 25, 2, 2, 0, 0, 0, 0, 0, 1].
		

Crossrefs

Cf. A183568, A242451 (the same for compositions).
Cf. A091602 (partitions by max multiplicity of any part).

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +add(b(n-i*j, i-1, k), j=max(1, k)..n/i)))
        end:
    T:= (n, k)-> b(n$2, k) -`if`(n=0 and k=0, 0, b(n$2, k+1)):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + Sum[b[n-i*j, i-1, k], {j, Max[1, k], n/i}]]]; T[n_, k_] := b[n, n, k] - If[n == 0 && k == 0, 0, b[n, n, k+1]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 08 2015, translated from Maple *)

A356607 Number of strict integer partitions of n with at least one neighborless part.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 20, 24, 30, 36, 41, 52, 60, 71, 84, 100, 114, 137, 158, 183, 214, 248, 283, 330, 379, 432, 499, 570, 648, 742, 846, 955, 1092, 1234, 1395, 1580, 1786, 2005, 2270, 2548, 2861, 3216, 3610, 4032, 4526, 5055, 5642, 6304, 7031, 7820, 8720, 9694
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2022

Keywords

Comments

A part x is neighborless if neither x - 1 nor x + 1 are parts.

Examples

			The a(0) = 0 through a(9) = 6 partitions:
  .  (1)  (2)  (3)  (4)   (5)   (6)   (7)    (8)    (9)
                    (31)  (41)  (42)  (52)   (53)   (63)
                                (51)  (61)   (62)   (72)
                                      (421)  (71)   (81)
                                             (431)  (531)
                                             (521)  (621)
		

Crossrefs

This is the strict case of A356235 and A356236.
The complement is counted by A356606, non-strict A355393 and A355394.
A000041 counts integer partitions, strict A000009.
A000837 counts relatively prime partitions, ranked by A289509.
A007690 counts partitions with no singletons, complement A183558.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Or@@Table[!MemberQ[ptn,x-1]&&!MemberQ[ptn,x+1],{x,Union[ptn]}]]]],{n,0,30}]

Extensions

a(31)-a(59) from Lucas A. Brown, Sep 09 2022
Showing 1-10 of 38 results. Next