A090858
Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0
a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
(11) (22) (221) (33) (322) (44) (441) (55) (443)
(211) (311) (411) (331) (332) (522) (433) (533)
(511) (422) (711) (442) (551)
(3211) (611) (3321) (622) (722)
(3221) (4221) (811) (911)
(4211) (4311) (5221) (4322)
(5211) (5311) (4331)
(6211) (4421)
(5411)
(6221)
(6311)
(7211)
(43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
(2) (22) (32) (222) (322) (332) (432) (3322)
(31) (311) (3111) (331) (431) (3222) (3331)
(421) (2222) (4221) (22222)
(31111) (3311) (4311) (42211)
(4211) (33111) (43111)
(311111) (42111) (331111)
(3111111) (421111)
(31111111)
(End)
-
g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
# second Maple program:
b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
`if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
`if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..100); # Alois P. Heinz, Dec 28 2015
-
b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
-
alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
A239955
Number of partitions p of n such that (number of distinct parts of p) <= max(p) - min(p).
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 27, 38, 54, 75, 104, 137, 187, 245, 322, 418, 542, 691, 887, 1121, 1417, 1777, 2228, 2767, 3441, 4247, 5235, 6424, 7871, 9594, 11688, 14173, 17168, 20723, 24979, 30008, 36010, 43085, 51479, 61357, 73032, 86718, 102852, 121718
Offset: 0
a(6) counts these 4 partitions: 51, 42, 411, 3111.
Applying the condition to the conjugate gives
A350839, ranked by
A350841.
A116932 counts partitions with differences != -1 or -2, strict
A025157.
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> combinat[numbpart](n)-add(b(n, k), k=0..n):
seq(a(n), n=0..47); # Alois P. Heinz, Aug 18 2025
-
z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}] (*A239954*)
Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*)
Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*)
Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}] (*A034296*)
Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*)
(* second program *)
Table[Length[Select[IntegerPartitions[n],Min@@Differences[#]<-1&]],{n,0,30}] (* Gus Wiseman, Jun 26 2022 *)
-
qs(a,q,n) = {prod(k=0,n,1-a*q^k)}
A_q(N) = {if(N<4, vector(N+1,i,0), my(q='q+O('q^(N-2)), g= sum(i=2,N+1, q^i/qs(q,q,i-1)*sum(j=1,i-1, q^(2*j)*qs(q^2,q^2,j-2)))); concat([0,0,0,0], Vec(g)))} \\ John Tyler Rascoe, Aug 16 2025
A350839
Number of integer partitions of n with a difference < -1 and a conjugate difference < -1.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 2, 3, 7, 11, 17, 26, 39, 54, 81, 108, 148, 201, 269, 353, 467, 601, 779, 995, 1272, 1605, 2029, 2538, 3171, 3941, 4881, 6012, 7405, 9058, 11077, 13478, 16373, 19817, 23953, 28850, 34692, 41599, 49802, 59461, 70905, 84321, 100155, 118694
Offset: 0
The a(5) = 1 through a(10) = 17 partitions:
(311) (411) (511) (422) (522) (622)
(3111) (4111) (611) (711) (811)
(31111) (3311) (4221) (4222)
(4211) (4311) (4411)
(5111) (5211) (5221)
(41111) (6111) (5311)
(311111) (33111) (6211)
(42111) (7111)
(51111) (42211)
(411111) (43111)
(3111111) (52111)
(61111)
(331111)
(421111)
(511111)
(4111111)
(31111111)
Allowing -1 gives
A144300 = non-constant partitions.
These partitions are ranked by
A350841.
A277103 = partitions with the same number of odd parts as their conjugate.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],(Min@@Differences[#]<-1)&&(Min@@Differences[conj[#]]<-1)&]],{n,0,30}]
A350841
Heinz numbers of integer partitions with a difference < -1 and a conjugate difference < -1.
Original entry on oeis.org
20, 28, 40, 44, 52, 56, 63, 68, 76, 80, 84, 88, 92, 99, 100, 104, 112, 116, 117, 124, 126, 132, 136, 140, 148, 152, 153, 156, 160, 164, 168, 171, 172, 176, 184, 188, 189, 196, 198, 200, 204, 207, 208, 212, 220, 224, 228, 232, 234, 236, 244, 248, 252, 260, 261
Offset: 1
The terms together with their prime indices begin:
20: (3,1,1)
28: (4,1,1)
40: (3,1,1,1)
44: (5,1,1)
52: (6,1,1)
56: (4,1,1,1)
63: (4,2,2)
68: (7,1,1)
76: (8,1,1)
80: (3,1,1,1,1)
84: (4,2,1,1)
88: (5,1,1,1)
92: (9,1,1)
99: (5,2,2)
Heinz number rankings are in parentheses below.
These partitions are counted by
A350839.
A116932 = partitions with no successions or gaps of size 1, strict
A025157.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],(Min@@Differences[Reverse[primeMS[#]]]<-1)&&(Min@@Differences[conj[primeMS[#]]]<-1)&]
Showing 1-4 of 4 results.
Comments