cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A325280 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 3, 0, 0, 1, 3, 4, 3, 0, 0, 0, 1, 1, 4, 8, 1, 0, 0, 0, 1, 3, 6, 9, 3, 0, 0, 0, 0, 1, 2, 8, 12, 7, 0, 0, 0, 0, 0, 1, 3, 11, 17, 10, 0, 0, 0, 0, 0, 0, 1, 1, 11, 26, 17, 0, 0, 0, 0, 0, 0, 0, 1, 5, 19, 25, 27
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (this sequence).

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  2  1  1
  0  1  1  2  3  0
  0  1  3  4  3  0  0
  0  1  1  4  8  1  0  0
  0  1  3  6  9  3  0  0  0
  0  1  2  8 12  7  0  0  0  0
  0  1  3 11 17 10  0  0  0  0  0
  0  1  1 11 26 17  0  0  0  0  0  0
  0  1  5 19 25 27  0  0  0  0  0  0  0
  0  1  1 17 44 38  0  0  0  0  0  0  0  0
  0  1  3 25 53 52  1  0  0  0  0  0  0  0  0
  0  1  3 29 63 76  4  0  0  0  0  0  0  0  0  0
  0  1  4 37 83 98  8  0  0  0  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)  (333)        (54)      (441)       (3321)
       (111111111)  (63)      (522)       (4221)
                    (72)      (711)       (4311)
                    (81)      (3222)      (5211)
                    (432)     (6111)      (32211)
                    (531)     (22221)     (42111)
                    (621)     (33111)     (321111)
                    (222111)  (51111)
                              (411111)
                              (2211111)
                              (3111111)
                              (21111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A032741. Column k = 3 is A325245.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or this sequence (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==k&]],{n,0,16},{k,0,n}]
  • PARI
    \\ depth(p) gives adjusted frequency depth of partition.
    depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1+depth(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A225485 Number of partitions of n that have frequency depth k, an array read by rows.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 4, 3, 1, 1, 4, 8, 1, 1, 3, 6, 9, 3, 1, 2, 8, 12, 7, 1, 3, 11, 17, 10, 1, 1, 11, 26, 17, 1, 5, 19, 25, 27, 1, 1, 17, 44, 38, 1, 3, 25, 53, 52, 1, 1, 3, 29, 63, 76, 4
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

Let S = {x(1),...,x(k)} be a multiset whose distinct elements are y(1),...,y(h). Let f(i) be the frequency of y(i) in S. Define F(S) = {f(1),..,f(h)}, F(1,S) = F(S), and F(m,S) = F(F(m-1),S) for m>1. Then lim(F(m,S)) = {1} for every S, so that there is a least positive integer i for which F(i,S) = {1}, which we call the frequency depth of S.
Equivalently, the frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). - Gus Wiseman, Apr 19 2019
From Clark Kimberling, Sep 26 2023: (Start)
Below, m^n abbreviates the sum m+...+m of n terms. In the following list, the numbers p_1,...,p_k are distinct, m >= 1, and k >= 1. The forms of the partitions being counted are as follows:
column 1: [n],
column 2: [m^k],
column 3: [p_1^m,...,p_k^m],
column 4: [(p_1^m_1)^m,..., (p_k^m_k)^m], distinct numbers m_i.
Column 3 is of special interest. Assume first that m = 1, so that the form of partition being counted is p = [p_1,...,p_k], with conjugate given by [q_1,...,q_m] where q_i is the number of parts of p that are >= i. Since the p_i are distinct, the distinct parts of q are the integers 1,2,...,k. For the general case that m >= 1, the distinct parts of q are the integers m,...,km. Let S(n) denote the set of partitions of n counted by column 3. Then if a and b are in the set S*(n) of conjugates of partitions in S(n), and if a > b, then a - b is also in S*(n). Call this the subtraction property. Conversely, if a partition q has the subtraction property, then q must consist of a set of numbers m,..,km for some m. Thus, column 3 counts the partitions of n that have the subtraction property. (End)

Examples

			The first 9 rows:
  n = 1 .... 0
  n = 2 .... 1..1
  n = 3 .... 1..1..1
  n = 4 .... 1..2..1..1
  n = 5 .... 1..1..2..3
  n = 6 .... 1..3..4..3
  n = 7 .... 1..1..4..8..1
  n = 8 .... 1..3..6..9..3
  n = 9 .... 1..2..8.12..7
For the 7 partitions of 5, successive frequencies are shown here:
  5 -> 1 (depth 1)
  41 -> 11 -> 2 -> 1 (depth 3)
  32 -> 11 -> 2 -> 1 (depth 3)
  311 -> 12 -> 11 -> 2 -> 1 (depth 4)
  221 -> 12 -> 11 -> 2 -> 1 (depth 4)
  2111 -> 13 -> 11 -> 2 -> 1 (depth 4)
  11111 -> 5 -> 1 (depth 2)
Summary: 1 partition has depth 1; 1 has depth 2; 2 have 3; and 3 have 4, so that the row for n = 5 is 1..1..2..3 .
		

Crossrefs

Row sums are A000041.
Column k = 2 is A032741.
Column k = 3 is A325245.
a(n!) = A325272(n).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], i]],
      {i, 1, Length[IntegerPartitions[n]]}];
    Flatten[Table[Count[u[n], k], {n, 2, 25}, {k, 1, Max[u[n]]}]]

A325282 Maximum adjusted frequency depth among integer partitions of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (A325280).
Run lengths are A325258, i.e., first differences of Levine's sequence A011784 (except at n = 1).

Crossrefs

Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Max@@fdadj/@IntegerPartitions[n],{n,0,30}]

Formula

a(0) = 0; a(1) = 1; a(n > 1) = A225486(n).

A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 4
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325374.

Examples

			The first 30 terms count the following partitions:
   3: (21)
   6: (321)
   6: (2211)
   9: (222111)
  10: (4321)
  12: (332211)
  12: (22221111)
  15: (54321)
  15: (2222211111)
  18: (333222111)
  18: (222222111111)
  20: (44332211)
  21: (654321)
  21: (22222221111111)
  24: (333322221111)
  24: (2222222211111111)
  27: (222222222111111111)
  28: (7654321)
  30: (5544332211)
  30: (444333222111)
  30: (333332222211111)
  30: (22222222221111111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    unifQ[m_]:=SameQ@@Length/@Split[m];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}]
  • PARI
    A007862(n) = sumdiv(n, d, ispolygonal(d, 3));
    A325334(n) = if(!n,n,A007862(n)-1); \\ Antti Karttunen, Jan 17 2025

Formula

a(n) = A007862(n) - 1.

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 17 2025

A377056 Antidiagonal-sums of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 3, 11, 2, 36, -27, 142, -207, 595, -1066, 2497, -4878, 10726, -22189, 48383, -103318, 224296, -480761, 1030299, -2186942, 4626313, -9740648, 20492711, -43109372, 90843475, -191769296, 405528200, -858373221, 1817311451, -3845483855, 8129033837
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 3.
		

Crossrefs

For primes we have A140119 or A376683, unsigned A376681 or A376684.
These are the antidiagonal-sums of A175804.
First column of the same array is A281425.
For composites we have A377034, unsigned A377035.
For squarefree numbers we have A377039, unsigned A377040.
For nonsquarefree numbers we have A377049, unsigned A377048.
For prime powers we have A377052, unsigned A377053.
The unsigned version is A378621.
The version for strict partitions is A378970 (row-sums of A378622), unsigned A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[PartitionsP/@Range[0,2nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A378971 Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
		

Crossrefs

For primes we have A376681 or A376684, signed version A140119 or A376683.
For composites we have A377035, signed version A377034.
For squarefree numbers we have A377040, signed version A377039.
For nonsquarefree numbers we have A377048, signed version A377049.
For prime powers we have A377053, signed version A377052.
For partition numbers we have A378621, signed version A377056.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The signed version is A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A325253 Number of integer partitions of n with adjusted frequency depth ceiling(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 6, 8, 17, 26, 25, 44, 53, 63, 83, 128, 168, 212, 273, 344, 429, 525, 662, 796, 684, 910, 1211, 1595, 2060, 2663, 3406, 4315, 5426, 6784, 8417, 0, 0, 0, 0, 0, 1, 5, 14, 36, 76, 143, 269, 446, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 22 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(11) = 26 partitions:
    11  111  22    32  42    43   53    54      433        443
             1111  41  51    52   62    63      442        533
                       321   61   71    72      622        551
                       2211  421  431   81      811        722
                                  521   432     3331       911
                                  3311  531     4222       3332
                                        621     7111       5222
                                        222111  61111      8111
                                                222211     32222
                                                322111     33311
                                                331111     44111
                                                511111     71111
                                                2221111    222221
                                                4111111    322211
                                                22111111   332111
                                                31111111   422111
                                                211111111  611111
                                                           2222111
                                                           3221111
                                                           3311111
                                                           5111111
                                                           22211111
                                                           41111111
                                                           221111111
                                                           311111111
                                                           2111111111
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Ceiling[Sqrt[n]]&]],{n,0,30}]

A325271 Number of integer partitions of n with frequency depth round(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 4, 6, 8, 11, 11, 19, 44, 53, 63, 83, 113, 124, 171, 190, 344, 429, 525, 662, 796, 981, 1182, 1442, 1709, 2096, 2663, 3406, 4315, 5426, 6784, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 5, 14, 36, 76, 143, 269, 446, 738, 1143, 1754
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(10) = 11 partitions:
  (2)  (111)  (22)    (11111)  (33)      (43)   (53)    (54)      (64)
              (1111)           (222)     (52)   (62)    (63)      (73)
                               (111111)  (61)   (71)    (72)      (82)
                                         (421)  (431)   (81)      (91)
                                                (521)   (432)     (532)
                                                (3311)  (531)     (541)
                                                        (621)     (631)
                                                        (222111)  (721)
                                                                  (3322)
                                                                  (4321)
                                                                  (4411)
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Round[Sqrt[n]]&]],{n,0,30}]

A325252 Number of integer partitions of n with frequency depth floor(sqrt(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 8, 11, 11, 19, 17, 25, 29, 83, 113, 124, 171, 190, 242, 289, 368, 399, 796, 981, 1182, 1442, 1709, 2096, 2469, 2990, 3545, 4276, 5037, 8417, 10466, 12824, 15721, 19104, 23267, 27981, 33856, 40515, 48508, 57826, 68982, 81493, 446, 738
Offset: 0

Views

Author

Gus Wiseman, Apr 22 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).

Examples

			The a(2) = 1 through a(12) = 19 partitions (A = 10, B = 11):
  2  3  22    11111  33      1111111  44        54      64    65    75
        1111         222              2222      63      73    74    84
                     111111           11111111  72      82    83    93
                                                81      91    92    A2
                                                432     532   A1    B1
                                                531     541   542   543
                                                621     631   632   642
                                                222111  721   641   651
                                                        3322  731   732
                                                        4321  821   741
                                                        4411  5321  831
                                                                    921
                                                                    4422
                                                                    5421
                                                                    5511
                                                                    6321
                                                                    332211
                                                                    333111
                                                                    22221111
		

Crossrefs

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==Floor[Sqrt[n]]&]],{n,0,30}]

A325279 Number of integer partitions of n whose maximum multiplicity is one greater than their minimum multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 5, 6, 9, 10, 18, 18, 31, 34, 48, 57, 80, 86, 122, 138, 183, 211, 275, 311, 402, 461, 576, 663, 825, 942, 1163, 1334, 1621, 1865, 2248, 2566, 3084, 3532, 4193, 4794, 5674, 6472, 7617, 8685, 10153, 11576, 13483, 15320, 17790, 20200, 23342
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The Heinz numbers of these partitions are given by A325241.
For example, the partition (44111) has two multiplicities (2 and 3) which differ by 1, so is counted under a(11).

Examples

			The a(4) = 1 through a(11) = 18 partitions:
  (211)  (221)  (411)  (322)    (332)    (441)    (433)      (443)
         (311)         (331)    (422)    (522)    (442)      (533)
                       (511)    (611)    (711)    (622)      (551)
                       (3211)   (3221)   (3321)   (811)      (722)
                       (22111)  (4211)   (4221)   (5221)     (911)
                                (22211)  (4311)   (5311)     (4322)
                                         (5211)   (6211)     (4331)
                                         (32211)  (33211)    (4421)
                                         (33111)  (42211)    (5411)
                                                  (2221111)  (6221)
                                                             (6311)
                                                             (7211)
                                                             (33221)
                                                             (33311)
                                                             (43211)
                                                             (44111)
                                                             (52211)
                                                             (2222111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Max@@Length/@Split[#]-Min@@Length/@Split[#]==1&]],{n,0,30}]
Showing 1-10 of 11 results. Next