cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A325242 Irregular triangle read by rows with zeros removed where T(n,k) is the number of integer partitions of n with k distinct multiplicities, n > 0.

Original entry on oeis.org

1, 2, 3, 4, 1, 4, 3, 8, 3, 6, 9, 10, 12, 11, 19, 15, 26, 1, 13, 39, 4, 25, 47, 5, 19, 70, 12, 29, 89, 17, 33, 115, 28, 42, 148, 41, 39, 189, 69, 62, 235, 88, 55, 294, 141, 81, 362, 183, 1, 84, 450, 253, 5, 103, 558, 333, 8, 105, 669, 464, 17, 153, 817, 576, 29
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

For example, the partition (32111) has multiplicities {1,1,3}, of which 2 are distinct, so is counted under T(8,2).

Examples

			Triangle begins:
   1
   2
   3
   4   1
   4   3
   8   3
   6   9
  10  12
  11  19
  15  26   1
  13  39   4
  25  47   5
  19  70  12
  29  89  17
  33 115  28
  42 148  41
  39 189  69
  62 235  88
  55 294 141
  81 362 183   1
Row n = 8 counts the following partitions:
  (8)         (332)
  (44)        (422)
  (53)        (611)
  (62)        (3221)
  (71)        (4211)
  (431)       (5111)
  (521)       (22211)
  (2222)      (32111)
  (3311)      (41111)
  (11111111)  (221111)
              (311111)
              (2111111)
		

Crossrefs

Row lengths are A056556. Row sums are A000041. Column k = 1 is A047966. Column k = 2 is A325243.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n],Length[Union[Length/@Split[#]]]==k&]],{n,20},{k,n}],0,2]

A183558 Number of partitions of n containing a clique of size 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 6, 7, 13, 16, 25, 33, 49, 61, 90, 113, 156, 198, 269, 334, 448, 556, 726, 902, 1163, 1428, 1827, 2237, 2817, 3443, 4302, 5219, 6478, 7833, 9632, 11616, 14197, 17031, 20712, 24769, 29925, 35688, 42920, 50980, 61059, 72318, 86206, 101837, 120941
Offset: 0

Views

Author

Alois P. Heinz, Jan 05 2011

Keywords

Comments

All parts of a number partition with the same value form a clique. The size of a clique is the number of elements in the clique.

Examples

			a(5) = 6, because 6 partitions of 5 contain (at least) one clique of size 1: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(1) = 1 through a(8) = 16 partitions are the following. The Heinz numbers of these partitions are given by A052485 (weak numbers).
  (1)  (2)  (3)   (4)    (5)     (6)      (7)       (8)
            (21)  (31)   (32)    (42)     (43)      (53)
                  (211)  (41)    (51)     (52)      (62)
                         (221)   (321)    (61)      (71)
                         (311)   (411)    (322)     (332)
                         (2111)  (3111)   (331)     (422)
                                 (21111)  (421)     (431)
                                          (511)     (521)
                                          (2221)    (611)
                                          (3211)    (3221)
                                          (4111)    (4211)
                                          (31111)   (5111)
                                          (211111)  (32111)
                                                    (41111)
                                                    (311111)
                                                    (2111111)
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=1, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);
  • Mathematica
    max = 50; f = (1 - Product[1 - x^j + x^(2*j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; CoefficientList[s, x] (* Jean-François Alcover, Oct 01 2014. Edited by Gus Wiseman, Apr 19 2019 *)

Formula

G.f.: (1-Product_{j>0} (1-x^(j)+x^(2*j))) / (Product_{j>0} (1-x^j)).
From Vaclav Kotesovec, Nov 15 2016: (Start)
a(n) = A000041(n) - A007690(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n). (End)

Extensions

a(0)=0 prepended by Gus Wiseman, Apr 19 2019

A090858 Number of partitions of n such that there is exactly one part which occurs twice, while all other parts occur only once.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 2, 4, 6, 7, 8, 13, 15, 21, 25, 30, 39, 50, 58, 74, 89, 105, 129, 156, 185, 221, 264, 309, 366, 433, 505, 593, 696, 805, 941, 1090, 1258, 1458, 1684, 1933, 2225, 2555, 2922, 3346, 3823, 4349, 4961, 5644, 6402, 7267, 8234, 9309, 10525, 11886, 13393
Offset: 0

Views

Author

Vladeta Jovovic, Feb 12 2004

Keywords

Comments

Number of solutions (p(1),p(2),...,p(n)), p(i)>=0,i=1..n, to p(1)+2*p(2)+...+n*p(n)=n such that |{i: p(i)<>0}| = p(1)+p(2)+...+p(n)-1.
Also number of partitions of n such that if k is the largest part, then, with exactly one exception, all the integers 1,2,...,k occur as parts. Example: a(7)=4 because we have [4,2,1], [3,3,1], [3,2,2] and [3,1,1,1,1]. - Emeric Deutsch, Apr 18 2006

Examples

			a(7) = 4 because we have 4 such partitions of 7: [1,1,2,3], [1,1,5], [2,2,3], [1,3,3].
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(2) = 1 through a(11) = 13 partitions described in the name are the following (empty columns not shown). The Heinz numbers of these partitions are given by A060687.
  (11)  (22)   (221)  (33)   (322)   (44)    (441)   (55)    (443)
        (211)  (311)  (411)  (331)   (332)   (522)   (433)   (533)
                             (511)   (422)   (711)   (442)   (551)
                             (3211)  (611)   (3321)  (622)   (722)
                                     (3221)  (4221)  (811)   (911)
                                     (4211)  (4311)  (5221)  (4322)
                                             (5211)  (5311)  (4331)
                                                     (6211)  (4421)
                                                             (5411)
                                                             (6221)
                                                             (6311)
                                                             (7211)
                                                             (43211)
The a(2) = 1 through a(10) = 8 partitions described in Emeric Deutsch's comment are the following (empty columns not shown). The Heinz numbers of these partitions are given by A325284.
  (2)  (22)  (32)   (222)   (322)    (332)     (432)      (3322)
       (31)  (311)  (3111)  (331)    (431)     (3222)     (3331)
                            (421)    (2222)    (4221)     (22222)
                            (31111)  (3311)    (4311)     (42211)
                                     (4211)    (33111)    (43111)
                                     (311111)  (42111)    (331111)
                                               (3111111)  (421111)
                                                          (31111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(k*(k+1)/2)*((1-x^k)/x^(k-1)/(1-x)-k)/product(1-x^i,i=1..k),k=1..15): gser:=series(g,x=0,64): seq(coeff(gser,x,n),n=1..54); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(n>i*(i+3-2*t)/2, 0,
         `if`(n=0, t, b(n, i-1, t)+`if`(i>n, 0, b(n-i, i-1, t)+
         `if`(t=1 or 2*i>n, 0, b(n-2*i, i-1, 1)))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 3 - 2*t)/2, 0, If[n == 0, t, b[n, i - 1, t] + If[i > n, 0,  b[n - i, i - 1, t] + If[t == 1 || 2*i > n, 0, b[n - 2*i, i - 1, 1]]]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 100} ] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==1&]],{n,0,30}] (* Gus Wiseman, Apr 19 2019 *)
  • PARI
    alist(n)=concat([0,0],Vec(sum(k=1,n\2,(x^(2*k)+x*O(x^n))/(1+x^k)*prod(j=1,n-2*k,1+x^j+x*O(x^n))))) \\ Franklin T. Adams-Watters, Nov 02 2015

Formula

G.f.: Sum_{k>0} x^(2*k)/(1+x^k) * Product_{k>0} (1+x^k). Convolution of 1-A048272(n) and A000009(n). a(n) = A036469(n) - A015723(n).
G.f.: sum(x^(k(k+1)/2)[(1-x^k)/x^(k-1)/(1-x)-k]/product(1-x^i,i=1..k), k=1..infinity). - Emeric Deutsch, Apr 18 2006
a(n) ~ c * exp(Pi*sqrt(n/3)) / n^(1/4), where c = 3^(1/4) * (1 - log(2)) / (2*Pi) = 0.064273294789... - Vaclav Kotesovec, May 24 2018

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 26 2004
a(0) added by Franklin T. Adams-Watters, Nov 02 2015

A117571 Expansion of (1+2*x^2)/((1-x)*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 4, 4, 6, 7, 7, 9, 10, 10, 12, 13, 13, 15, 16, 16, 18, 19, 19, 21, 22, 22, 24, 25, 25, 27, 28, 28, 30, 31, 31, 33, 34, 34, 36, 37, 37, 39, 40, 40, 42, 43, 43, 45, 46, 46, 48, 49, 49, 51, 52, 52, 54, 55, 55, 57, 58, 58, 60, 61, 61, 63, 64, 64, 66, 67, 67, 69, 70, 70, 72
Offset: 0

Views

Author

Paul Barry, Mar 29 2006

Keywords

Comments

Row sums of A116948.
Place n+2 equally-spaced points around a circle, labeled 0,1,2,...,n+1. For each i = 0..n+1 such that 2i != i mod n+2, draw an (undirected) chord from i to 2i mod n+2. Then a(n) is the number of distinct chords. - Kival Ngaokrajang, May 13 2016 (Edited by N. J. A. Sloane, Jun 23 2016)
From Gus Wiseman, Apr 19 2019: (Start)
Also the number of integer partitions of n + 2 with 1 fewer distinct multiplicities than (not necessarily distinct) parts. These are partitions of the form (x,x), (x,y), (x,x,y), or (x,y,y). For example, the a(0) = 1 through a(8) = 9 partitions are the following. The Heinz numbers of these partitions are given by A325270.
(11) (21) (22) (32) (33) (43) (44) (54) (55)
(31) (41) (42) (52) (53) (63) (64)
(211) (221) (51) (61) (62) (72) (73)
(311) (411) (322) (71) (81) (82)
(331) (332) (441) (91)
(511) (422) (522) (433)
(611) (711) (442)
(622)
(811)
(End)

Crossrefs

Programs

  • Magma
    [1 + Floor(2*n/3) + Floor((n+1)/3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 25 2016
  • Maple
    A117571:=n->1 + floor(2*n/3) + floor((n+1)/3): seq(A117571(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
  • Mathematica
    CoefficientList[Series[(1 + 2 x^2)/((1 - x) (1 - x^3)), {x, 0, 71}], x] (* Michael De Vlieger, May 13 2016 *)

Formula

G.f.: (1+2*x^2)/((1-x)*(1-x^3)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = cos(2*Pi*n/3+Pi/6)/sqrt(3)-sin(2*Pi*n/3+Pi/6)/3+(3n+2)/3.
a(n) = Sum_{k=0..n} 2*A001045(L((n-k+2)/3)) where L(j/p) is the Legendre symbol of j and p.
a(n) = 1 + floor((n+1)/3) + floor(2*n/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) = n+sign((n-1) mod 3). - Wesley Ivan Hurt, Sep 25 2017

A127002 Number of partitions of n that have the form a+a+b+c where a,b,c are distinct.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 7, 8, 11, 11, 17, 17, 23, 23, 30, 31, 39, 38, 48, 49, 58, 58, 70, 70, 82, 82, 95, 96, 110, 109, 125, 126, 141, 141, 159, 159, 177, 177, 196, 197, 217, 216, 238, 239, 260, 260, 284, 284, 308, 308, 333, 334, 360, 359, 387, 388, 415, 415, 445
Offset: 1

Views

Author

Clark Kimberling, Jan 01 2007

Keywords

Comments

From Gus Wiseman, Apr 19 2019: (Start)
Also the number of integer partitions of n - 4 of the form a+b, a+a+b, or a+a+b+c, ignoring ordering. A bijection can be constructed from the partitions described in the name by subtracting one from all parts and deleting zeros. These are also partitions with adjusted frequency depth (A323014, A325280) equal to their length plus one, and their Heinz numbers are given by A325281. For example, the a(7) = 1 through a(13) = 11 partitions are:
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(221) (411) (61) (71) (72)
(311) (322) (332) (81)
(331) (422) (441)
(511) (611) (522)
(3211) (3221) (711)
(4211) (3321)
(4221)
(4311)
(5211)
(End)

Examples

			a(10) counts these partitions: {1,1,2,6}, (1,1,3,5), {2,2,1,5}.
a(11) counts {1,1,2,7}, {1,1,3,6}, {1,1,4,5}, {2,2,1,6}, {2,2,3,4}, {3,3,1,4}, {4,4,1,2}
From _Gus Wiseman_, Apr 19 2019: (Start)
The a(7) = 1 through a(13) = 11 partitions of the form a+a+b+c are the following. The Heinz numbers of these partitions are given by A085987.
  (3211)  (3221)  (3321)  (5221)  (4322)  (4332)  (4432)
          (4211)  (4221)  (5311)  (4331)  (4431)  (5332)
                  (4311)  (6211)  (4421)  (5322)  (5422)
                  (5211)          (5411)  (5331)  (5521)
                                  (6221)  (6411)  (6322)
                                  (6311)  (7221)  (6331)
                                  (7211)  (7311)  (6511)
                                          (8211)  (7411)
                                                  (8221)
                                                  (8311)
                                                  (9211)
(End)
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); [0,0,0,0,0,0] cat Coefficients(R!( x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) )); // G. C. Greubel, May 30 2019
    
  • Maple
    g:=sum(sum(sum(x^(i+j+k)*(x^i+x^j+x^k),i=1..j-1),j=2..k-1),k=3..80): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=1..65); # Emeric Deutsch, Jan 05 2007
    isA127002 := proc(p) local s; if nops(p) = 4 then s := convert(p,set) ; if nops(s) = 3 then RETURN(1) ; else RETURN(0) ; fi ; else RETURN(0) ; fi ; end:
    A127002 := proc(n) local part,res,p; part := combinat[partition](n) ; res := 0 ; for p from 1 to nops(part) do res := res+isA127002(op(p,part)) ; od ; RETURN(res) ; end:
    for n from 1 to 200 do print(A127002(n)) ; od ; # R. J. Mathar, Jan 07 2007
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Sort[Length/@Split[#]]=={1,1,2}&]],{n,70}] (* Gus Wiseman, Apr 19 2019 *)
    Rest[CoefficientList[Series[x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)), {x,0,70}], x]] (* G. C. Greubel, May 30 2019 *)
  • PARI
    my(x='x+O('x^70)); concat(vector(6), Vec(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)))) \\ G. C. Greubel, May 30 2019
    
  • Sage
    a=(x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 70).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 30 2019

Formula

G.f.: x^7*(1+2*x+3*x^2)/((1-x^2)*(1-x^3)*(1-x^4)) - Vladeta Jovovic, Jan 03 2007
G.f.: Sum_{k>=3} Sum_{j=2..k-1} Sum_{m=1..j-1} x^(m+j+k)*(x^m +x^j +x^k). - Emeric Deutsch, Jan 05 2007
a(n) = binomial(floor((n-1)/2),2) - floor((n-1)/3) - floor((n-1)/4) + floor(n/4). - Mircea Merca, Nov 23 2013
a(n) = A005044(n-4) + 2*A005044(n-3) + 3*A005044(n-2). - R. J. Mathar, Nov 23 2013

A378622 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the strict partition numbers A000009.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, -1, -2, -3, 3, 1, 1, 2, 4, 7, 4, 1, 0, -1, -3, -7, -14, 5, 1, 0, 0, 1, 4, 11, 25, 6, 1, 0, 0, 0, -1, -5, -16, -41, 8, 2, 1, 1, 1, 1, 2, 7, 23, 64, 10, 2, 0, -1, -2, -3, -4, -6, -13, -36, -100, 12, 2, 0, 0, 1, 3, 6, 10, 16, 29, 65, 165
Offset: 0

Views

Author

Gus Wiseman, Dec 13 2024

Keywords

Examples

			As a table (read by antidiagonals downward):
        n=0:  n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:
  ----------------------------------------------------------
  k=0:   1     1     1     2     2     3     4     5     6
  k=1:   0     0     1     0     1     1     1     1     2
  k=2:   0     1    -1     1     0     0     0     1     0
  k=3:   1    -2     2    -1     0     0     1    -1     0
  k=4:  -3     4    -3     1     0     1    -2     1     1
  k=5:   7    -7     4    -1     1    -3     3     0    -3
  k=6: -14    11    -5     2    -4     6    -3    -3     7
  k=7:  25   -16     7    -6    10    -9     0    10   -14
  k=8: -41    23   -13    16   -19     9    10   -24    24
  k=9:  64   -36    29   -35    28     1   -34    48   -34
As a triangle (read by rows):
   1
   1   0
   1   0   0
   2   1   1   1
   2   0  -1  -2  -3
   3   1   1   2   4   7
   4   1   0  -1  -3  -7 -14
   5   1   0   0   1   4  11  25
   6   1   0   0   0  -1  -5 -16 -41
   8   2   1   1   1   1   2   7  23  64
		

Crossrefs

Rows are: A000009 (k=0), A087897 (k=1, without first term), A378972 (k=2).
For primes we have A095195 or A376682.
For partitions we have A175804.
First column is A293467 (up to sign).
For composites we have A377033.
For squarefree numbers we have A377038.
For nonsquarefree numbers we have A377046.
For prime powers we have A377051.
Position of first zero in each row is A377285.
Triangle's row-sums are A378970, absolute A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A378972 Second differences of the strict partition numbers A000009.

Original entry on oeis.org

0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 3, 2, 3, 4, 3, 4, 6, 4, 6, 8, 6, 9, 10, 9, 12, 14, 13, 16, 19, 18, 22, 26, 24, 30, 34, 34, 40, 45, 46, 53, 60, 62, 70, 79, 82, 93, 104, 108, 122, 136, 142, 160, 176, 186, 208, 228, 243, 268
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			The strict partition numbers begin (A000009):
  1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, ...
with differences (A087897 without first term):
  0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, ...
with differences (a(n)):
  0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, ...
		

Crossrefs

For primes we have A036263.
The version for partitions is A053445.
For composites we have A073445.
For squarefree numbers we have A376590.
For nonsquarefree numbers we have A376593.
For powers of primes (inclusive) we have A376596.
For non powers of primes (inclusive) we have A376599.
Second row of A378622. See also:
- A293467 gives first column (up to sign).
- A377285 gives position of first zero in each row.
- A378970 gives row-sums.
- A378971 gives absolute value row-sums.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Differences[Table[PartitionsQ[n],{n,0,100}],2]

A377285 Position of first 0 in the n-th differences of the strict partition numbers A000009, or 0 if 0 does not appear.

Original entry on oeis.org

0, 1, 1, 5, 5, 8, 20, 7, 22
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Comments

Open problem: Do the 9th differences of the strict integer partition numbers contain a zero? If so, we must have a(9) > 10^5.
a(12) = 47. Conjecture: a(n) = 0 for n > 12. - Chai Wah Wu, Dec 15 2024

Examples

			The 7th differences of A000009 are: 25, -16, 7, -6, 10, -9, 0, 10, ... so a(7) = 7.
		

Crossrefs

For primes we have A376678.
For composites we have A377037.
For squarefree numbers we have A377042.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
Position of first zero in each row of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives first column (up to sign).
- A378970 gives row-sums.
- A378971 gives row-sums of absolute value.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Table[Position[Differences[PartitionsQ/@Range[0,100],k],0][[1,1]],{k,1,8}]
  • PARI
    a(n, nn=100) = my(q='q+O('q^nn), v=Vec(eta(q^2)/eta(q))); for (i=1, n, my(w=vector(#v-1, k, v[k+1]-v[k])); v = w;); my(vz=select(x->x==0, v, 1)); if (#vz, vz[1]); \\ Michel Marcus, Dec 15 2024

A378970 Antidiagonal-sums of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, -4, 18, -20, 47, -56, 110, -153, 309, -532, 1045, -1768, 2855, -3620, 2928, 2927, -20371, 62261, -148774, 314112, -613835, 1155936, -2175658, 4244218, -8753316, 19006746, -42471491, 95234915, -210395017, 453414314, -949507878, 1931940045
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = -4.
		

Crossrefs

For primes we have A140119 or A376683, absolute value A376681 or A376684.
For composites we have A377034, absolute value A377035.
For squarefree numbers we have A377039, absolute value A377040.
For nonsquarefree numbers we have A377047, absolute value A377048.
For prime powers we have A377052, absolute value A377053.
For partition numbers we have A377056, absolute value A378621.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The unsigned version is A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A378971 Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
		

Crossrefs

For primes we have A376681 or A376684, signed version A140119 or A376683.
For composites we have A377035, signed version A377034.
For squarefree numbers we have A377040, signed version A377039.
For nonsquarefree numbers we have A377048, signed version A377049.
For prime powers we have A377053, signed version A377052.
For partition numbers we have A378621, signed version A377056.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The signed version is A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
Showing 1-10 of 17 results. Next