cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325316 a(n) = A048250(n) OR A162296(n), where OR is the bitwise-OR, A003986.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 31, 20, 26, 32, 36, 24, 60, 31, 42, 36, 56, 30, 72, 32, 63, 48, 54, 48, 79, 38, 60, 56, 90, 42, 96, 44, 52, 62, 72, 48, 124, 57, 91, 72, 58, 54, 108, 72, 120, 80, 90, 60, 104, 62, 96, 104, 127, 84, 144, 68, 126, 96, 144, 72, 191, 74, 114, 124, 124, 96, 168, 80
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitOr @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 79] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325316(n) = bitor(A048250(n),A162296(n));

Formula

a(n) = A003986(A048250(n), A162296(n)).
a(n) = A000203(n) - A325318(n) = A325317(n) + A325318(n).

A325318 a(n) = A048250(n) AND A162296(n), where AND is the bitwise-AND, A004198.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 16, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 32, 16, 0, 0, 0, 0, 2, 0, 40, 0, 12, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, 0, 0, 0, 16, 32, 2, 0, 0, 0, 40, 0
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Array[BitAnd @@ Map[Total, {#3, Complement[#2, #3]}] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325318(n) = bitand(A048250(n),A162296(n));

Formula

a(n) = A004198(A048250(n), A162296(n)).
a(n) = A000203(n) - A325316(n) = (A000203(n) - A325317(n))/2.
a(n) = A325316(n) - A325317(n).
Showing 1-2 of 2 results.