cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A325323 Palindromes in base 10 that are not Brazilian.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 787, 797, 919, 929, 10201, 10301, 10501, 10601, 11311, 11411, 12421, 12721, 12821, 13331, 13831, 13931, 14341, 14741, 15451, 15551, 16061, 16361, 16561, 16661, 17471, 17971, 18181, 18481, 19391, 19891, 19991
Offset: 1

Views

Author

Bernard Schott, Apr 20 2019

Keywords

Comments

The terms >= 11 of this sequence are either prime palindromes which are not Brazilian, or square of primes (except 121).

Crossrefs

Intersection of A002113 and A220570.
Complement of A325322 with respect to A002113.
Cf. A088882 (Palindromes not repdigits).

Programs

  • Mathematica
    brazQ[n_] := Module[{b = 2, found = False}, While[b < n - 1 && Length @ Union[IntegerDigits[n, b]] > 1, b++]; b < n - 1]; Select[Range[20000], PalindromeQ[#] && !brazQ[#] &] (* Amiram Eldar, Apr 14 2021 *)
  • PARI
    isb(n) = for(b=2, n-2, my(d=digits(n, b)); if(vecmin(d)==vecmax(d), return(1))); \\ A125134
    isp(n) = my(d=digits(n)); d == Vecrev(d); \\ A002113
    isok(n) = !isb(n) && isp(n); \\ Michel Marcus, Apr 22 2019
Showing 1-1 of 1 results.