cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A325326 Heinz numbers of integer partitions covering an initial interval of positive integers with distinct multiplicities.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 18, 24, 32, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 256, 288, 324, 360, 384, 432, 486, 512, 540, 576, 600, 648, 720, 768, 864, 972, 1024, 1152, 1200, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2048, 2160, 2250, 2304, 2400, 2592
Offset: 1

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A320348.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    18: {1,2,2}
    24: {1,1,1,2}
    32: {1,1,1,1,1}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    96: {1,1,1,1,1,2}
   108: {1,1,2,2,2}
   128: {1,1,1,1,1,1,1}
   144: {1,1,1,1,2,2}
   162: {1,2,2,2,2}
   192: {1,1,1,1,1,1,2}
   256: {1,1,1,1,1,1,1,1}
   288: {1,1,1,1,1,2,2}
   324: {1,1,2,2,2,2}
   360: {1,1,1,2,2,3}
   384: {1,1,1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    normQ[n_Integer]:=n==1||PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]];
    Select[Range[100],normQ[#]&&UnsameQ@@Last/@FactorInteger[#]&]

Formula

Intersection of normal numbers (A055932) and numbers with distinct prime exponents (A130091).

A319160 Number of integer partitions of n whose multiplicities appear with relatively prime multiplicities.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 45, 58, 83, 108, 142, 188, 250, 315, 417, 528, 674, 861, 1094, 1363, 1724, 2152, 2670, 3311, 4105, 5021, 6193, 7561, 9216, 11219, 13614, 16419, 19886, 23920, 28733, 34438, 41272, 49184, 58746, 69823, 82948, 98380, 116567
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

From Gus Wiseman, Jul 11 2023: (Start)
A partition is aperiodic (A000837) if its multiplicities are relatively prime. This sequence counts partitions whose multiplicities are aperiodic.
For example:
- The multiplicities of (5,3) are (1,1), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (3,2,2,1) are (2,1,1), with multiplicities (2,1), which are relatively prime, so it is counted under a(8).
- The multiplicities of (3,3,1,1) are (2,2), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (4,4,4,3,3,3,2,1) are (3,3,1,1), with multiplicities (2,2), which have common divisor 2, so it is not counted under a(24).
(End)

Examples

			The a(8) = 16 partitions:
  (8),
  (44),
  (332), (422), (611),
  (2222), (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111),
  (11111111).
Missing from this list are: (53), (62), (71), (431), (521), (3311).
		

Crossrefs

These partitions have ranks A319161.
For distinct instead of relatively prime multiplicities we have A325329.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Length/@Split[Sort[Length/@Split[#]]]==1&]],{n,30}]

A325369 Numbers with no two prime exponents appearing the same number of times in the prime signature.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities. The enumeration of these partitions by sum is given by A325329.

Examples

			Most small numbers are in the sequence. However the sequence of non-terms together with their prime indices begins:
  12: {1,1,2}
  18: {1,2,2}
  20: {1,1,3}
  24: {1,1,1,2}
  28: {1,1,4}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  48: {1,1,1,1,2}
  50: {1,3,3}
  52: {1,1,6}
  54: {1,2,2,2}
  56: {1,1,1,4}
  63: {2,2,4}
  68: {1,1,7}
  72: {1,1,1,2,2}
  75: {2,3,3}
  76: {1,1,8}
  80: {1,1,1,1,3}
  88: {1,1,1,5}
For example, the prime indices of 1260 are {1,1,2,2,3,4}, whose multiplicities give the prime signature {1,1,2,2}, and since 1 and 2 appear the same number of times, 1260 is not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A325331 Number of integer partitions of n whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 7, 10, 14, 18, 30, 34, 44, 65, 73, 88, 110, 127, 155, 183, 202, 231, 277, 301, 339, 382, 430, 461, 551, 579, 681, 762, 896, 1010, 1255, 1406, 1752, 2061, 2555, 3001, 3783, 4437, 5512, 6611, 8056, 9539, 11668, 13692, 16515, 19435, 23098
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

Partitions with distinct multiplicities that cover an initial interval of positive integers are counted by A320348, with Heinz numbers A325337. Partitions whose multiplicities appear with distinct multiplicities are counted by A325329, with Heinz numbers A325369. Partitions whose multiplicities appear with multiplicities that cover an initial interval of positive integers of counted by A325330, with Heinz numbers A325370.
The Heinz numbers of these partitions are given by A325371.

Examples

			The a(0) = 1 through a(8) = 7 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
           (11)  (111)  (22)    (11111)  (33)      (3211)     (44)
                        (1111)           (222)     (1111111)  (2222)
                                         (111111)             (3221)
                                                              (4211)
                                                              (32111)
                                                              (11111111)
For example, the partition p = (5,5,4,3,3,3,2,2) has multiplicities (2,3,1,2), which appear with multiplicities (1,2,1), which cover an initial interval but are not distinct, so p is not counted under a(27). The partition q = (5,5,5,4,4,4,3,3,2,2,1,1) has multiplicities (3,3,2,2,2), which appear with multiplicities (3,2), which are distinct but do not cover an initial interval, so q is not counted under a(39). The partition r = (3,3,2,1,1) has multiplicities (2,1,2), which appear with multiplicities (1,2), which are distinct and cover an initial interval, so r is counted under a(10).
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[IntegerPartitions[n],normQ[Length/@Split[Sort[Length/@Split[#]]]]&&UnsameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]

A325371 Numbers whose prime signature has multiplicities of its parts all distinct and covering an initial interval of positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 60, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 107, 109, 113, 120, 121, 125, 126, 127, 128, 131, 132, 137, 139, 140, 149, 150, 151, 156, 157, 163
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The first term that is not 1 or a prime power is 60.
The prime signature (A118914) is the multiset of exponents appearing in a number's prime factorization.
Numbers whose prime signature has distinct parts that cover an initial interval are given by A325337.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose multiplicities appear with distinct multiplicities that cover an initial interval of positive integers. The enumeration of these partitions by sum is given by A325331.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[100],normQ[Length/@Split[Sort[Last/@FactorInteger[#]]]]&&UnsameQ@@Length/@Split[Sort[Last/@FactorInteger[#]]]&]

A325333 Number of integer partitions of n whose multiplicities all appear the same number of times.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 19, 23, 32, 39, 50, 63, 82, 96, 125, 152, 186, 226, 271, 326, 392, 473, 552, 663, 771, 918, 1065, 1261, 1448, 1710, 1953, 2283, 2608, 3062, 3455, 4013, 4552, 5271, 5974, 6884, 7774, 8937, 10065, 11570, 12953, 14838, 16710, 18979
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (211)   (221)    (51)      (61)
                        (1111)  (311)    (222)     (322)
                                (2111)   (321)     (331)
                                (11111)  (411)     (421)
                                         (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (4111)
                                         (111111)  (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
For example, the partition (4,3,3,3,2,2,2,1) has multiplicities (1,3,3,1), and since both multiplicities 1 and 3 appear twice, (4,3,3,3,2,2,2,1) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]
Showing 1-6 of 6 results.