A325359 Numbers of the form p^y * 2^z where p is an odd prime, y >= 2, and z >= 0.
9, 18, 25, 27, 36, 49, 50, 54, 72, 81, 98, 100, 108, 121, 125, 144, 162, 169, 196, 200, 216, 242, 243, 250, 288, 289, 324, 338, 343, 361, 392, 400, 432, 484, 486, 500, 529, 576, 578, 625, 648, 676, 686, 722, 729, 784, 800, 841, 864, 961, 968, 972, 1000, 1058
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 9: {2,2} 18: {1,2,2} 25: {3,3} 27: {2,2,2} 36: {1,1,2,2} 49: {4,4} 50: {1,3,3} 54: {1,2,2,2} 72: {1,1,1,2,2} 81: {2,2,2,2} 98: {1,4,4} 100: {1,1,3,3} 108: {1,1,2,2,2} 121: {5,5} 125: {3,3,3} 144: {1,1,1,1,2,2} 162: {1,2,2,2,2} 169: {6,6} 196: {1,1,4,4} 200: {1,1,1,3,3}
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 1000: # to get terms <= N P:= select(isprime, [seq(i,i=3..floor(sqrt(N)),2)]): B:= map(proc(p) local y; seq(p^y, y=2..floor(log[p](N))) end proc, P): sort(map(proc(t) local z; seq(2^z*t, z=0..ilog2(N/t)) end proc, B)); # Robert Israel, May 03 2019
-
Mathematica
Select[Range[1000],MatchQ[FactorInteger[2*#],{{2,},{?(#>2&),_?(#>1&)}}]&]
Formula
Sum_{n>=1} 1/a(n) = 2 * Sum_{p prime} 1/(p*(p-1)) - 1 = 2 * A136141 - 1 = 0.54631333809959025572... - Amiram Eldar, Sep 30 2020
Comments