cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325363 Heinz numbers of integer partitions into nonzero triangular numbers A000217.

Original entry on oeis.org

1, 2, 4, 5, 8, 10, 13, 16, 20, 25, 26, 29, 32, 40, 47, 50, 52, 58, 64, 65, 73, 80, 94, 100, 104, 107, 116, 125, 128, 130, 145, 146, 151, 160, 169, 188, 197, 200, 208, 214, 232, 235, 250, 256, 257, 260, 290, 292, 302, 317, 320, 325, 338, 365, 376, 377, 394, 397
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A007294.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    4: {1,1}
    5: {3}
    8: {1,1,1}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   20: {1,1,3}
   25: {3,3}
   26: {1,6}
   29: {10}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   47: {15}
   50: {1,3,3}
   52: {1,1,6}
   58: {1,10}
   64: {1,1,1,1,1,1}
   65: {3,6}
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    trgs=Table[n*(n+1)/2,{n,Sqrt[2*PrimePi[nn]]}];
    Select[Range[nn],SubsetQ[trgs,primeMS[#]]&]