cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325390 Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).

Examples

			The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
		

Crossrefs

Number of appearances of n is A325392(n).
Positions of squarefree numbers are A325367.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]

A325403 Number of permutations of the multiset of prime factors of 2n whose first part is not 2.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 4, 0, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 0, 4, 1, 4, 4, 1, 1, 4, 1, 1, 6, 1, 1, 9, 1, 1, 1, 2, 3, 4, 1, 1, 6, 4, 1, 4, 1, 1, 8, 1, 1, 9, 0, 4, 6, 1, 1, 4, 6, 1, 5, 1, 1, 9, 1, 4, 6, 1, 1, 4, 1, 1, 8, 4, 1, 4, 1, 1, 18, 4, 1, 4, 1, 4, 1, 1, 3, 9, 4, 1, 6, 1, 1, 18
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Examples

			The a(60) = 8 permutations of {2,2,2,3,5} whose first part is not 2:
  3 2 2 2 5
  3 2 2 5 2
  3 2 5 2 2
  3 5 2 2 2
  5 2 2 2 3
  5 2 2 3 2
  5 2 3 2 2
  5 3 2 2 2
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[Table@@@FactorInteger[2*n]]],First[#]!=2&]],{n,100}]
  • PARI
    A008480(n) = {my(sig=factor(n)[, 2]); vecsum(sig)!/factorback(apply(k->k!, sig))}; \\ After code in A008480
    A325403(n) = (A008480(n+n)-A008480(n)); \\ Antti Karttunen, Dec 06 2021

Formula

a(n) = A008480(2n) - A008480(n) = A325392(2n).

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2021
Showing 1-2 of 2 results.