A325400 Heinz numbers of reversed integer partitions whose k-th differences are weakly increasing for all k >= 0.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74
Offset: 1
Keywords
Examples
Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins: 18: {1,2,2} 36: {1,1,2,2} 50: {1,3,3} 54: {1,2,2,2} 60: {1,1,2,3} 70: {1,3,4} 72: {1,1,1,2,2} 75: {2,3,3} 90: {1,2,2,3} 98: {1,4,4} 100: {1,1,3,3} 108: {1,1,2,2,2} 120: {1,1,1,2,3} 126: {1,2,2,4} 140: {1,1,3,4} 144: {1,1,1,1,2,2} 147: {2,4,4} 150: {1,2,3,3} 154: {1,4,5} 162: {1,2,2,2,2}
Links
Crossrefs
Programs
-
Mathematica
primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; Select[Range[100],And@@Table[Greater@@Differences[primeptn[#],k],{k,0,PrimeOmega[#]}]&]
Comments