A325406 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree.
1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 4, 2, 3, 1, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 1, 3, 5, 6, 3, 3, 1, 0, 0, 1, 3, 4, 8, 7, 1, 4, 2, 0, 0, 1, 3, 6, 11, 7, 5, 2, 4, 2, 1, 0, 1, 1, 6, 13, 8, 9, 9, 0, 4, 3, 1, 0, 1, 6, 7, 11, 12, 9
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 2 0 0 1 2 2 0 0 1 1 3 2 0 0 1 4 2 3 1 0 0 1 1 5 5 2 1 0 0 1 3 5 6 3 3 1 0 0 1 3 4 8 7 1 4 2 0 0 1 3 6 11 7 5 2 4 2 1 0 1 1 6 13 8 9 9 0 4 3 1 0 1 6 7 11 12 9 10 8 4 3 2 2 0 1 1 7 18 9 14 19 5 10 3 5 4 1 0 1 3 9 17 9 22 20 15 9 7 6 5 4 1 0 1 4 8 22 11 16 24 22 19 10 11 2 8 7 2 0 1 4 10 23 15 24 23 27 27 12 14 11 8 8 5 5 Row n = 8 counts the following partitions: (8) (44) (17) (116) (134) (1133) (111122) (2222) (26) (125) (233) (11123) (11111111) (35) (1115) (1223) (11222) (224) (1124) (1111112) (11114) (111113)
Links
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,0,Length[#]}]]==k&]],{n,0,16},{k,0,n}]
Comments