cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325406 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 4, 2, 3, 1, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 1, 3, 5, 6, 3, 3, 1, 0, 0, 1, 3, 4, 8, 7, 1, 4, 2, 0, 0, 1, 3, 6, 11, 7, 5, 2, 4, 2, 1, 0, 1, 1, 6, 13, 8, 9, 9, 0, 4, 3, 1, 0, 1, 6, 7, 11, 12, 9
Offset: 0

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences. The distinct differences of any degree are the union of the k-th differences for all k >= 0. For example, the k-th differences of (1,1,2,4) for k = 0...3 are:
(1,1,2,4)
(0,1,2)
(1,1)
(0)
so there are a total of 4 distinct differences of any degree, namely {0,1,2,4}.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  2  0
  0  1  2  2  0
  0  1  1  3  2  0
  0  1  4  2  3  1  0
  0  1  1  5  5  2  1  0
  0  1  3  5  6  3  3  1  0
  0  1  3  4  8  7  1  4  2  0
  0  1  3  6 11  7  5  2  4  2  1
  0  1  1  6 13  8  9  9  0  4  3  1
  0  1  6  7 11 12  9 10  8  4  3  2  2
  0  1  1  7 18  9 14 19  5 10  3  5  4  1
  0  1  3  9 17  9 22 20 15  9  7  6  5  4  1
  0  1  4  8 22 11 16 24 22 19 10 11  2  8  7  2
  0  1  4 10 23 15 24 23 27 27 12 14 11  8  8  5  5
Row n = 8 counts the following partitions:
  (8)  (44)        (17)       (116)     (134)   (1133)   (111122)
       (2222)      (26)       (125)     (233)   (11123)
       (11111111)  (35)       (1115)    (1223)  (11222)
                   (224)      (1124)
                   (1111112)  (11114)
                              (111113)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,0,Length[#]}]]==k&]],{n,0,16},{k,0,n}]