A325414 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with omega-sequence summing to n.
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 1, 1, 2, 0, 3, 1, 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 4, 2, 2, 1, 1, 0, 1, 0, 1, 0, 4, 0, 3, 3, 2, 2, 2, 3, 1, 0, 1, 0, 0, 1, 4, 0, 3, 3, 3, 4, 1, 6, 3, 1, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 2 0 0 1 0 1 0 0 0 2 1 0 2 1 0 1 0 1 1 2 0 3 1 1 1 0 1 0 0 0 3 0 1 4 2 2 1 1 0 1 0 1 0 4 0 3 3 2 2 2 3 1 0 1 0 0 1 4 0 3 3 3 4 1 6 3 1 0 1 0 1 0 4 1 6 4 4 1 4 5 8 2 1 Row n = 9 counts the following partitions: 9 333 54 432 441 3222 22221 411111 3321 32211 321111 63 531 522 6111 33111 4221 42111 72 621 711 222111 51111 4311 21111111 81 111111111 5211 2211111 3111111
Crossrefs
Programs
-
Mathematica
omseq[ptn_List]:=If[ptn=={},{},Length/@NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]; Table[Length[Select[IntegerPartitions[n],Total[omseq[#]]==k&]],{n,0,10},{k,0,Max[Total/@omseq/@IntegerPartitions[n]]}]
Comments