A325433 Triangle T read by rows: T(n,k) is the number of partitions of n in which k is the least integer that is not a part and there are more parts > k than there are < k (n >= k > 0).
0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 0, 0, 0, 0, 12, 3, 0, 0, 0, 0, 0, 0, 0, 0, 14, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 21, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
T(9,2) = 3 from 6 + 3 = 5 + 3 + 1 = 4 + 4 + 1 = 3 + 3 + 3. The triangle T(n, k) begins n\k| 1 2 3 4 5 6 7 8 9 ---+------------------------------------ 1 | 0 2 | 1 0 3 | 1 0 0 4 | 2 0 0 0 5 | 2 0 0 0 0 6 | 4 0 0 0 0 0 7 | 4 1 0 0 0 0 0 8 | 7 1 0 0 0 0 0 0 9 | 8 2 0 0 0 0 0 0 0 ...
Links
- George E. Andrews and Mircea Merca, The truncated pentagonal number theorem, Journal of Combinatorial Theory, Series A, Volume 119, Issue 8, 2012, Pages 1639-1643.
- K. Banerjee and M. G. Dastidar, Inequalities for the partition function arising from truncated theta series, RISC Report Series No. 22-20, 2023. See Theorem 1.1 at p. 2.
Programs
-
Mathematica
T[n_,k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j*(3*j+1)/2]-PartitionsP[n-j*(3*j+5)/2-1]),{j,0,k-1}]; Flatten[Table[T[n,k],{n,1,15},{k,1,n}]]
-
PARI
T(n,k) = (-1)^(k-1)*sum(j=0, k-1, (-1)^j*(numbpart(n-j*(3*j+1)/2)-numbpart(n-j*(3*j+5)/2-1))); tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n,k), ", ")); print); tabl(10) \\ yields sequence in triangular form