cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325434 Row sums of A325433.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 60, 80, 101, 133, 167, 216, 270, 344, 428, 540, 667, 834, 1026, 1271, 1555, 1914, 2330, 2849, 3453, 4197, 5065, 6125, 7360, 8858, 10605, 12706, 15155, 18086, 21497, 25557, 30279, 35870, 42366, 50026, 58909, 69346
Offset: 1

Views

Author

Stefano Spezia, Apr 27 2019

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j*(3*j+1)/2]-PartitionsP[n-j*(3*j+5)/2-1]),{j,0,k-1}]; (* A325433 *)
    Table[Sum[T[n,k],{k,1,n}],{n,1,50}]
  • PARI
    T(n,k) = (-1)^(k-1)*sum(j=0, k-1, (-1)^j*(numbpart(n-j*(3*j+1)/2)-numbpart(n-j*(3*j+5)/2-1))); \\ A325433
    a(n) = sum(k=1, n, T(n,k));

Formula

a(n) = Sum_{k=1..n} ((-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(3*j + 1)/2) - p(n - j*(3*j + 5)/2 - 1))), where p(n) = A000041(n) is the number of partitions of n.
Conjecture: Lim_{n->infinity} a(n)/A000041(n) = 1/3.