A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11
Offset: 0
Examples
Triangle begins: 1 0 1 0 0 2 0 0 0 3 0 0 0 1 4 0 0 0 0 2 5 0 0 0 0 2 3 6 0 0 0 0 0 4 4 7 0 0 0 0 0 3 6 5 8 0 0 0 0 0 1 6 8 6 9 0 0 0 0 0 0 6 9 10 7 10 0 0 0 0 0 0 2 11 12 12 8 11 0 0 0 0 0 0 2 9 16 15 14 9 12 0 0 0 0 0 0 0 7 16 21 18 16 10 13 0 0 0 0 0 0 0 4 18 23 26 21 18 11 14 0 0 0 0 0 0 0 3 12 29 30 31 24 20 12 15 0 0 0 0 0 0 0 1 12 27 40 37 36 27 22 13 16 0 0 0 0 0 0 0 0 8 26 42 51 44 41 30 24 14 17 0 0 0 0 0 0 0 0 6 23 48 57 62 51 46 33 26 15 18 0 0 0 0 0 0 0 0 2 21 44 70 72 73 58 51 36 28 16 19 Row n = 9 counts the following partitions: (333) (54) (63) (72) (9) (432) (522) (621) (81) (441) (531) (5211) (711) (3222) (4221) (42111) (6111) (3321) (4311) (321111) (51111) (22221) (32211) (2211111) (411111) (33111) (3111111) (222111) (21111111) (111111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}]
Formula
Franklin T. Adams-Watters has conjectured at A049597 that the k-th column gives the coefficients of the sum of Gaussian polynomials [k,m] for m = 0..k.
Comments