cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325466 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 5, 4, 0, 1, 0, 0, 1, 4, 6, 3, 0, 1, 0, 0, 1, 6, 6, 4, 3, 1, 1, 0, 0, 1, 6, 10, 4, 2, 4, 1, 2, 0, 0, 1, 7, 12, 8, 3, 3, 4, 1, 2, 1, 0, 1, 6, 13, 11, 2, 11, 3, 4, 0, 3, 1, 1, 1, 10, 16, 7, 10, 10
Offset: 0

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.

Examples

			Triangle begins:
  1
  1  0
  1  1  0
  1  2  0  0
  1  3  1  0  0
  1  3  2  1  0  0
  1  5  4  0  1  0  0
  1  4  6  3  0  1  0  0
  1  6  6  4  3  1  1  0  0
  1  6 10  4  2  4  1  2  0  0
  1  7 12  8  3  3  4  1  2  1  0
  1  6 13 11  2 11  3  4  0  3  1  1
  1 10 16  7 10 10  6  6  5  1  1  2  1
  1  7 18 14  7 16 11  6  4  8  0  5  0  1
  1  9 20 18 10 20 13 10 10  4  5  5  2  2  2
  1 10 26 18 10 24 13 19 13 10  6  6  2  8  1  2
  1 11 25 24 16 28 19 24 14 15  9 10  9  5  2  7  1
Row 7 counts the following reversed partitions (empty columns not shown):
  (7)  (16)       (115)     (133)   (11122)
       (25)       (124)     (1123)
       (34)       (223)     (1222)
       (1111111)  (1114)
                  (11113)
                  (111112)
Row 9 counts the following reversed partitions (empty columns not shown):
(9)  (18)         (117)       (126)    (1125)   (1134)    (11223)  (111222)
     (27)         (135)       (144)    (11124)  (1224)             (1111122)
     (36)         (225)       (1233)            (11133)
     (45)         (234)       (12222)           (111123)
     (333)        (1116)
     (111111111)  (2223)
                  (11115)
                  (111114)
                  (1111113)
                  (11111112)
		

Crossrefs

Row sums are A000041. Column k = 1 is A088922.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,1,Length[#]}]]==k&]],{n,0,16},{k,0,n}]