A325466 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree > 0.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 5, 4, 0, 1, 0, 0, 1, 4, 6, 3, 0, 1, 0, 0, 1, 6, 6, 4, 3, 1, 1, 0, 0, 1, 6, 10, 4, 2, 4, 1, 2, 0, 0, 1, 7, 12, 8, 3, 3, 4, 1, 2, 1, 0, 1, 6, 13, 11, 2, 11, 3, 4, 0, 3, 1, 1, 1, 10, 16, 7, 10, 10
Offset: 0
Examples
Triangle begins: 1 1 0 1 1 0 1 2 0 0 1 3 1 0 0 1 3 2 1 0 0 1 5 4 0 1 0 0 1 4 6 3 0 1 0 0 1 6 6 4 3 1 1 0 0 1 6 10 4 2 4 1 2 0 0 1 7 12 8 3 3 4 1 2 1 0 1 6 13 11 2 11 3 4 0 3 1 1 1 10 16 7 10 10 6 6 5 1 1 2 1 1 7 18 14 7 16 11 6 4 8 0 5 0 1 1 9 20 18 10 20 13 10 10 4 5 5 2 2 2 1 10 26 18 10 24 13 19 13 10 6 6 2 8 1 2 1 11 25 24 16 28 19 24 14 15 9 10 9 5 2 7 1 Row 7 counts the following reversed partitions (empty columns not shown): (7) (16) (115) (133) (11122) (25) (124) (1123) (34) (223) (1222) (1111111) (1114) (11113) (111112) Row 9 counts the following reversed partitions (empty columns not shown): (9) (18) (117) (126) (1125) (1134) (11223) (111222) (27) (135) (144) (11124) (1224) (1111122) (36) (225) (1233) (11133) (45) (234) (12222) (111123) (333) (1116) (111111111) (2223) (11115) (111114) (1111113) (11111112)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,1,Length[#]}]]==k&]],{n,0,16},{k,0,n}]
Comments